
Understanding the Enterprise Service Bus

The Enterprise Service Bus, or ESB, has recently become the sub-

ject of intense interest by enterprise customers and heated debate

by technologists—a clear sign that the idea either carries signifi-

cant merit or is compelling hype without substance. Certainly the

noise level alone on ESB warrants an open-minded examination of

the concept.

Defining the ESB
There are multiple definitions proposed for an ESB, which some

critics point to as evidence that there is no such thing as an ESB.

It’s also true that some vendors use ESB definitions that are self-

serving. We have no wish to be self-serving, nor do we want to

add yet another definition to the mix. Instead we have assembled a

synthesis of popular ESB definitions, and we have discovered that

they are not as diverse as is often claimed. Most ESB definitions

encompass a healthy subset of the following composite definition.

An ESB is a backbone for connecting and integrating an •	

enterprise’s applications and services.

An ESB provides the necessary infrastructure to create a •	

service oriented architecture.

An ESB is a convergence of EAI, MOM, and SOA concepts.•	

An ESB is based on open standards such as XML, SOAP, •	

and WS-*.

An ESB provides intelligent routing, such as publish-sub-•	

scribe, message brokering, and failover routing.

An ESB provides mediation, overcoming data, communica-•	

tion, and security differences between endpoints.

An ESB integrates with legacy systems using standards-•	

based adapters.

An ESB provides logical centralized management but is •	

physically decentralized.

An ESB is able to apply EAI concepts such as rules and •	

orchestrations.

An ESB is able to monitor and throttle activity as per a Ser-•	

vice Level Agreement (SLA).

We would expect a true ESB to satisfy most of these points and an

imposter ESB to score low. Of course, not all enterprises neces-

sarily need all of these capabilities, so even a partial ESB solution

could provide real benefit to some classes of customer.

Although it’s not part of the composite definition, we would pro-

pose adding one more point that should help distinguish a true,

well-intentioned ESB design from a deceptive offering:

An ESB is modular and product-agnostic; its parts can be •	

replaced with new implementations.

Let’s round out the definition by exploring the above points in a bit

more detail.

A Connection and Integration Backbone
In the ESB model, most or all applications and services in the

enterprise connect to the ESB and communicate with each other

over the ESB. Applications and services usually connect using

SOA standards, whereas legacy systems require integration via

EAI technologies such as adapters. The communication between

endpoints is handled by message oriented middleware.

The ESB serves as a common messaging fabric for the enterprise.

Programs connect to the ESB and send or receive messages. The

ESB handles routing details, mediation of differences between

endpoints, and the physical details of communication. It’s far more

sensible to put such matters in the hands of I.T. personnel who can

make enterprise-level decisions than having them controlled by

developers at the application level.

An Infrastructure for SOA
As most SOA enthusiasts will tell you, the “A” in Service Oriented

Architecture is still missing in action (and some prefer the term

“Service Orientation” for this reason). Service orientation has given

us a good set of principles (such as loosely coupled communica-

tion), an excellent set of standards that are composable and ongo-

ing (WS-*), and compelling new technologies such as Windows

Communication Foundation. In short, while service orientation is

still young, it’s real enough to be usable here and now and is being

put into practice everywhere.

As enterprise adoption of services continues, the need for a

service oriented architecture will start to be felt. There’s a big

difference between the casual use of services and running your

enterprise primarily over services. As enterprises travel down the

road that will take them from light use of services to deep use

of services, many issues will arise, such as how to manage large

numbers of services well; how to overcome differences between

services; how to enforce SLAs; and how to enforce enterprise poli-

cies across distributed collections of services.

The Enterprise Service Orientation Maturity Model (ESOMM)

shown in Figure 1, and described in detail at http://www.architec-

Understanding ESB

PMS COLORS

PANTONE 541 C

TM

turejournal.net/2006/issue7/F6_Enable/default.aspx, reveals the

implications of running an enterprise on services. Just about every

enterprise is on the bottom rung of this ladder.

What would an ideal service oriented architecture look like? Al-

though many in the SOA camp are championing complete decen-

tralization, it’s instructive to visit past architectures that have fallen

in and out of favor over the years (Figure 2). Point-to-point archi-

tecture works all right on a small scale, but its problems become

apparent when used at the enterprise level. If each system has to

know the connection details of every other system, then each new

system added increases the problem of configuration and manage-

ment exponentially. This was the impetus that led us to hub-and-

spoke architectures, which most EAI products use. This architec-

ture was a vast improvement over point-to-point architectures, and

each system needed to communicate with only the hub. In addi-

tion, the hub could provide excellent management features since it

was a party to all communication. It only took time to reveal some

shortcomings with the hub-and-spoke approach, and today it is

often associated with concerns about scalability, single point of

failure, and vendor lock-in. The lesson from this is that it is pos-

sible to be overly decentralized or overly centralized. Fortunately,

An Infrastructure for SOA continued :

2

PMS COLORS

PANTONE 541 C

TM

ESOMM Maturity Levels

Enterprise is capable of writing and consuming
standards conformant Services with excellence
reach

Enterprise implements, consumes, and reuses
Services efficiently and consistently

Enterprise can effectively manage increasing
numbers of Services to guaranteed SLA's

Enterprise is capable of aggregating Services and
extending their use beyond its own borders

Layer
1

Layer
2

Layer
3

Layer
4

Figure 1: ESOMM

Figure 2: Messaging Architectures

there is a sound compromise to be found in the bus architecture,

which provides the benefits of logical centralization but is physi-

cally decentralized. The bus architecture in earlier days was often

used in message bus systems based on proprietary technologies,

but an ESB implements this architecture using WS-* standards.

Think of an ESB as a set of infrastructure services that comple-

ment your business services. Those infrastructure services provide

valuable functions such as routing, storing and forwarding of

messages, activity monitoring, transformations, and EAI functions

like applying rules or executing an orchestration. They also happen

to be in on the enterprise’s master game plan for configuration,

policies, and service levels which they cooperatively help enforce.

Infrastructure services make sense, and the idea is hardly new:

most enterprises already contain such things as domain controllers

and active directories.

The Convergence of EAI, MOM, and SOA
While the ESB can be described as a recent approach to enterprise

connection and integration, it stands firmly on the shoulders of

three disciplines that have already proven their worth in the enter-

prise. The ESB concept is made possible through the convergence

of Service Oriented Architecture (SO/SOA), Enterprise Application

Integration (EAI), and Message Oriented Middleware (MOM). The

rapid progress being made in each of these disciplines is all lead-

ing in the same direction, convergence.

It’s tempting to define ESB in familiar terms, and thus many with a

singular EAI, MOM, or SOA orientation tend to simplify their con-

cept of ESB to reflect their favorite discipline and all but ignore the

others. In actuality, an ESB needs to be strong in all three areas or

it will be seriously deficient. The very term Enterprise Service Bus

makes reference to all three disciplines.

The superset of capabilities that comes from combining SOA, EAI,

and MOM is extremely compelling. SOA makes loosely-coupled,

decentralized solutions possible that are enterprise-ready and

based on interoperable standards. EAI allows integration of any

combination of systems, with sophisticated message brokering,

message translation, business process orchestration, and rules

engine processing. MOM provides intelligent routing such as pub-

lish-subscribe topical messaging and strong managerial controls

over routing, auditing, activity monitoring, and throttling.

If combining disciplines was all there was to an ESB, we’d simply

call it “consulting”. To properly leverage these disciplines they

need to be combined in the right way through an architecture

that lets their strengths shine and overcome their inherent weak-

nesses. Each discipline has some weak areas that the others help

to resolve: SOA needs better enterprise manageability; EAI needs

to become decentralized; MOM needs to get away from proprietary

technologies. Combining these disciplines properly in an ESB over-

comes these weaknesses.

Standards-Based
An ESB primarily connects to services using the standards that

have been developed for first-generation web services and

second-generation SOA services (SOAP, WSDL/XSD, WS-*). This

approach should be followed not only for business endpoints but

also infrastructure services such as a transformation service. An

ideal ESB not only uses standards for external connections but is

itself made up of standardized services.

The use of open standards provides the enterprise with enormous

flexibility. It’s often difficult to predict where change will come

from; events such as taking on a new partner or acquiring an-

other company can make sudden demands on the enterprise that

were not anticipated and have to be accomplished quickly. With

standards based connections between the ESB and its endpoints,

any endpoint can be revised or reimplemented without disrupting

the rest of the enterprise. Disruption can even be avoided if con-

tracts change because the ESB can mediate differences between

programs. An ESB based on open standards gives customers

complete freedom to select best of breed business products and

technology products.

The use of open standards protects the enterprise by minimizing

risk. The extensible, composable WS-* standards represent long-

term thinking by the industry. Using these standards instead of

something proprietary also makes it much easier to find qualified

developers and I.T. personnel.

Intelligent Routing
Traditionally, enterprise developers write applications that include

both business logic and communication logic. In the past, that

communication logic made assumptions about which systems

information came from and which systems information should be

sent to. The problem with that model is that it requires the devel-

oper to have an enterprise-level view of how systems interconnect.

Even worse, that understanding is then embedded into the code. If

the enterprise connections change, the application has to change

as well. Intelligent routing takes that burden off of the developer

and makes it a concern of business analysts and the I.T. depart-

ment. Routing is determined by a centralized model, using mecha-

nisms such as publish-subscribe and message brokering. The

routing can be changed at any time, without requiring any changes

to application software.

Intelligent routing provides more options for message routing than

are typically available to the application developer. Publish-sub-

scribe messaging makes it easy to add or remove senders and

receivers, linking them through subscriptions. Message broker-

ing routes messages based on payload type (schema) or content.

Workload sharing can distribute messages evenly across multiple

instances of a service.

An Infrastructure for SOA continued :

3

PMS COLORS

PANTONE 541 C

TM

Failover routing can redirect messages to an alternate location

when a service has failed or been taken out of service.

Some ESBs provide an alternative to middleware routing where

clients are matched up to services via the ESB, and then communi-

cate directly. Although this avoids the intermediate communication

over middleware, it also means giving up most of the benefits of

intelligent routing and mediation.

Mediation
Differences in applications can be overcome through mediation.

An ESB can bridge differences in protocols, message formats,

security models, and communication semantics. It’s much simpler

to configure an ESB for mediation than it is to make changes to the

programs themselves.

One form of mediation is transformation, where messages are

converted into a format understood by the receiver. Transformation

is a key tool for supporting message versioning. Transformation

can also be used to reconcile differences in messages to or from

parties who may have differing requirements about format and

content.

Protocol mediation overcomes differences in communication

protocol, such as connecting a program that sends via queuing

to a service that receives via HTTP. Differences in communica-

tion semantics may also need to be mediated, as in connecting a

program that expects a request-reply pattern of communication

with a program that performs one-way communication. Security

mediation handles differences in security models, as in the case

of an enterprise application that uses Windows integrated security

conversing with a service that uses X.509 certificates.

The final aspect of mediation is differences in time. A sender may

be transmitting messages when some receivers are not currently

available. Mediation can store messages until a receiver is avail-

able to receive them. Even though a sender and receiver might be

using non-durable protocols such as HTTP, mediation between the

endpoints is free to use other means, such as transacted durable

queuing.

Integration
As important as it is to support open standards and provide a

good foundation for promoting the use of services, enterprises

often have legacy systems that need to be full participants in the

messaging arena. An ESB needs to be able to leverage adapter

mechanisms in order to bring non-services onto the bus. This

might be accomplished by leveraging the adapters in one or more

existing EAI products.

EAI products often contain a suite of adapters that the hub uses to

talk directly to legacy systems. To avoid the hub-and-spoke model

and vendor lock-in concerns of the past, a better arrangement is to

have the ESB call a service to communicate with a legacy sys-

tem. By placing the adapter within a service, any implementation

changes take place in the service, not the ESB’s internals.

Logically Centralized, Physically Decentralized
Much of the value an ESB provides is in the area of centralized

management. An ESB provides a single place to handle manage-

ment functions such as configuration, deployment, monitoring, and

control. Having a central facility like this makes change manage-

ment straightforward and rapid response possible. Not having

centralized management creates a significant problem for I.T. de-

partments and imposes unnecessary cost and delays when change

is required.

Centralized management used to come at the cost of a central-

ized architecture, but an ESB is physically decentralized. There are

no hubs. The only thing that is really centralized is the enterprise

game plan itself; the infrastructure services that cooperatively ex-

ecute and enforce the plan are themselves distributed. This is just

like a football team where the individual players are distributed on

the field, but the team is carrying out one plan.

Some ESB detractors claim there’s no need for any kind of central-

ization at all as WS-* services become smarter and smarter nodes.

It’s difficult to see how this could be accomplished without a com-

mon plan and some key infrastructure services to enforce security

and other policies. A completely decentralized system sounds like

a return to point-to-point architecture.

An ESB repository tracks such things as endpoint metadata,

schemas, contracts, and routing connections. An ESB repository

doesn’t have to be a single entity in its implementation, and may

well draw from other directories in the enterprise such as UDDI

directories and Active Directory.

An ESB promotes configuration changes instead of program

changes. Configuration changes are simpler, safer, and can be ap-

plied without disrupting running systems.

 EAI Capable
An ESB needs to be able to provide the kind of processing tradi-

tionally provided by EAI products. This potentially includes valida-

tion, transformations, rules engine processing, business activity

monitoring, and execution of orchestrations.

In a traditional EAI product, these EAI functions tend to be applied,

pipeline-fashion, on a single server or server cluster. An ESB pro-

vides the same functionality, but these EAI functions are exposed

as individual services. While messages are en route, the ESB calls

these EAI services as they are needed.

Intelligent Routing continued :

4

PMS COLORS

PANTONE 541 C

TM

Exposing EAI functions as services keeps the ESB true to its phi-

losophy of standards-based connections and allows any individual

function to be replaced. An enterprise is free to choose whatever

implementation they wish for these EAI services, possibly choosing

to use one or more established EAI products to power them.

SLA Aware
SLA enforcement is a difficult job, but ESBs are in the best position

to report on and control enterprise messaging activity. Many feel

strongly that SLA monitoring, reporting, and enforcement should

be left to companies and products that specialize in this area, and

there isn’t a reason why an ESB cannot team up with such prod-

ucts.

Since most enterprise messaging will pass through an ESB’s

middleware messaging system, messaging activity can be easily

tracked. Controls may be available to throttle messaging activity.

For example, it may be desirable to slow down lower priority mes-

saging in order to give more bandwidth to higher priority messag-

ing.

Modular and Product Agnostic
A subject of much debate is whether an ESB is a pattern or a prod-

uct. The most obvious answer would seem to be “both”: an ESB

can certainly be described as an architectural pattern and there is

more than one path to creating one. You’ve got to build your ESB

out of something; so it’s natural that one or more products would

be used to accelerate the process.

We feel the ESB is first and foremost a pattern, and one built for

the long term. It should be possible to survive incremental and

generational changes in technology without having to throw away

the pattern. The ESB should walk its own talk: not only should

business endpoints be exposed as services that can be modularly

replaced but so should the ESBs own internals.

Traditional EAI/MOM/SOA products will be helpful in creating an

ESB, as may products specifically designed with an ESB in mind.

But the design pattern aspect of an ESB is a higher order bit than

any products it is created from. It should be possible to mix and

change out the underlying products that power the ESB without

disrupting the enterprise.

Business Benefits of an ESB
An ESB improves business agility, streamlines business execution,

expands business intelligence, and decreases costs.

IMPROVE BUSINESS AGILITY
An ESB makes an organization more nimble, more responsive, and

more adaptive. The ESB matches up events—whether expected or

unexpected—with appropriate I.T. services. Unlike many traditional

infrastructures that are resistant to change, an ESB is designed

to accommodate change easily and painlessly. An ESB’s flexibility

makes it easier to add new partners at a moment’s notice, pursue a

sudden business opportunity, or improve time to market for a new

product or service.

Streamline Business Execution
An ESB improves an organization’s ability to execute efficiently and

meet its commitments consistently. Business rules can be enforced

across the breadth of the enterprise. The availability, capacity, and

responsiveness of enterprise systems can be managed to match

service level agreements. Enterprise activity can be captured for

compliance auditing.

Expand Business Intelligence
An ESB can provide new insights into enterprise activity. As the

clearing house for all messaging, the ESB has a full view of enter-

prise activity. Business activity monitoring tracks key performance

indicators for the business based on the messaging between enter-

prise systems. Collaborative reporting combines information from

multiple sources into comprehensive aggregate reports. Business

information can be accessed in real-time.

Decrease Costs
An ESB decreases an organization’s operating costs. The agility

and efficiency an ESB provides allows more to be accomplished

with less staffing. Additional value can be created from existing

software assets and existing technical skills by extending their

reach. The time and cost for I.T. to develop, integrate or deploy

solutions is reduced.

I.T. Benefits of an ESB
An ESB increases flexibility, lowers total cost of ownership,

strengthens operational reliability, boosts manageability, makes

I.T. roles more effective, improves the development process, and

decreases risk.

Increase Flexibility
The ESB’s event-driven architecture is both responsive and adap-

tive. Change management becomes simpler and more powerful.

Communication and routing details are no longer embedded in ap-

plication code and are easily reconfigured. Changes can be applied

dynamically without disrupting systems in operation. Real-time in-

tegration replaces lengthy integration projects. The increased flex-

ibility of an ESB can greatly accelerate mergers and acquisitions.

Lower Total Cost of Ownership
An ESB contributes to a lower TCO in several ways. Its long-term

architecture avoids the need to periodically reinvent the enterprise.

Additional value is created from existing software by extending its

reach and maximizing reuse. Expensive development and integra-

tion projects become smaller or disappear entirely in favor of con-

figuration changes. The use of open standards in an ESB makes it

easier to find qualified I.T. and development staff.

EAI Capable continued :

5

PMS COLORS

PANTONE 541 C

TM

Strengthen Operational Reliability
An ESB reinforces and improves operational reliability. The physi-

cally decentralized, service-based architecture is highly scalable.

The logically centralized management promotes high availability,

as does the freedom to apply configuration changes without taking

down critical systems. Operational health and activity monitoring,

throughput controls, and failover routing collectively help enforce

service level agreements. Quality of service can be adjusted to

provide desired throughput, security, and delivery assurances.

Heighten Manageability
An ESB brings manageability to new heights. An enterprise-level

view of management provides one-stop, unified configuration,

monitoring, and control of services, messages, routing, security,

and deployment. Enterprise-wide activity monitoring makes it pos-

sible to enforce SLAs, audit compliance, and enforce policies.

Decrease Risk
An ESB decreases risk for the enterprise. It provides the freedom

to select and combine best-of-breed products, and preserves the

enterprise architecture when those products need to be changed

out. The use of open standards in an ESB opens up a greater

spectrum of compatible tools and systems and makes it easier to

locate qualified personnel.

Making the Case for ESB
The ESB concept certainly seems real enough. Let’s see what crit-

ics and analysts have to say.

Responding to ESB Critics
Critics tend to view ESBs as ill-defined; hype without substance;

proprietary; overly centralized; short-term transitional solutions;

another name for EIA; a departure from SOA; or simply unneces-

sary. Our examination of ESB demonstrates the opposite:

While there are many ESB definitions, a composite definition •	

shows more similarities than differences.

While some ESB solutions may turn out to be hype without •	

substance or involve proprietary solutions, not all of them

are.

It’s misleading to call ESBs centralized; rather, they are logi-•	

cally centralized but physically decentralized.

An ESB is not a short-term solution but a long-term archi-•	

tectural pattern; it may certainly leverage products but is

not tied to any particular product.

An ESB is not another name for EAI; rather, it is a conver-•	

gence of EAI, MOM, and SOA.

An ESB is not a departure from SOA; rather, an ESB is a •	

service oriented architecture enabler.

ESBs are necessary for enterprises that plan to take service •	

orientation adoption to mature levels, or who require easy,

low-cost change management.

What Analysts Say
Analysts forecast a bright future for SOA adoption and cite the ESB

as the right vehicle for getting there:

“Forrester expects to see 67% of firms with
40,000 or more employees implementing SOA
this year, and 44% of small and medium-size
businesses (SMBs) already report that imple-
menting SOA is a high or critical priority. Near-
ly 70% of users say they will increase their
use of SOA, while only 1% of users will decrease
their use. The data also shows that most firms
— 83% — are using SOA for internal integra-
tion. This data reflects a perfect storm of
market conditions to drive the growth of ESBs,
which are the most straightforward way to
get started with service-oriented integration
today.

“ESBs are also typically less costly than other
ways of doing integration, such as integration-
centric business process management suites
(IC-BPMS), for three reasons:

Configuration is easier. •	
Standards support drives skills availability. •	
Costs are lower.”•	

				 —Forrester Research, 2006

In Part 2 of this article, we present Neuron ESB, Neudesic’s archi-

tecture and framework for an ESB based on the Microsoft technol-

ogy stack.

David Pallmann is an Architectural Consultant for Neudesic LLC, a Microsoft Gold Partner

consulting firm headquartered in Southern California. Copyright © 2006 by Neudesic LLC.

All Rights Reserved.

I.T. Benefits of an ESB continued :

6

PMS COLORS

PANTONE 541 C

TM

