Neuron Training: Web Services

Overview
This training will provide you with the knowledge necessary to begin using Neuron as a Web Services
intermediary. After this training you will be able to:

e Describe how Neuron functions as a Services Intermediary

e Use Neuron for Location Transparency

e Diagnose issues using Neuron logging

e Use Neuron for binding mediation

e Use Neuron for One-way and Request-Response scenarios

e Use Neuron for Routing, Versioning and Transformation

e Use Neuron to pass REST requests

e Use Neuron as a Service Host including as a host for a facade that calls multiple web services

You should complete the exercises provided at the end of the training to confirm your understanding of
the material presented.

Prerequisites
NET 4.5.1

MSMQ installed and running

MSDTC configured and running

Visual Studio 2013

Neuron Fundamentals Training or equivalent experience

Experience with WCF and Web Services

Concepts

Neuron uses its own pub sub APl in combination with Neuron Processes to function as a Services
Intermediary. More specifically Neuron exposes two components that connect clients to Neuron and
Neuron to Web Services:

e C(Client Connectors — A Client Connector is a configurable WCF Service Host that launches in its
own App Domain and contains an embedded Neuron Party. This Party publishes requests to the
bus with a Message Semantic of either Request or Multicast. Request Semantic is used when the

Messaging Pattern is configured as Request-Reply in the Client Connector’s Binding Properties
tab.

e Service Connectors — A Service Connector is a configurable WCF Service Proxy that launches in
its own App Domain and contains an embedded Neuron Party. This Party subscribes to Topics
on the bus and depending on if it’s required by the configured Messaging Pattern publishes a
response from the target service onto the bus.

The fact that Neuron uses its own Parties to route Web Services traffic makes it an extremely powerful
intermediary. This is because Processes can be attached to Parties to accomplish nearly any processing
required including calling Web Services inline, using databases, injecting custom code, XSLT transforms
etc.

This functionality is so complete you can use Neuron to create and host services that normally would be
self-hosted or hosted in IIS. That’s because the effective use of Neuron Processes and Client Connectors
can be used to create a complex real time orchestration.

Neuron endpoints are loosely typed. This means Neuron Endpoints do not require a specific WSDL or
contract. This means by default Neuron handles the On Ramp pattern extremely easily. The On Ramp
pattern is when you expose a single endpoint that can front multiple backend services or systems.

This also means Neuron does not generate WSDL for its service endpoints. This makes sense when you
think about it because if you can send more than one packet to the same endpoint and those packets
can be from completely unrelated services what WSDL would you expose?

This does not mean Neuron cannot enforce contracts or a schema. Neuron can use any type of
processing including schema validation to enforce a contract through the use of Processes.

Basic Location Transparency

One of the most basic uses of Neuron with Web Services is to provide for Location Transparency.
Location Transparency is achieved when the client connects to an endpoint that is different than the
actual target service. Among other things, this allows the service to be moved without the client having
to change its settings.

Complete the following steps to prepare for this training section (If any of the following steps are
unfamiliar please complete the Neuron Fundamentals training before attempting to continue):

1. Create a new configuration and save it in the folder LocationTransparency
Configure Neuron to use the LocationTransparency configuration and set the logging level to
verbose.

3. Restart Neuron.

4. Reconnect to Neuron using “Connect” mode in the initial screen so you are working on the live
ESB service and add the following (Hint: these are the default names when clicking the New
button)

e ATopic called Topicl

e A Publisher called Publisherl that subscribes to Topicl (Send + Receive)

o A Publisher called Publisher2 that subscribes to Topicl (Send + Receive)
5. Save your changes.

Click the Connections tab

T =

File View Tools Help

([@~ @ ruwing - o B | Confaeserver |CotegoryFter [)

Click Import a Service

— M
‘g Neuron ESB Explorer E‘E‘g
File View Tools Help

4 @~ | @ Ruming ~ o) MM | Configure Server | Category Filter

‘You are working online. LocationTransparency

0 0 po e e apo
=] N -
= Import Service Endpoint
L) Retrieve Web Transformation Description Language (WSDL) and XML Schema (X5D) Metadata
o b - e
4’ Adapter Registration Step 1: Identify Source

3 Service Bindings You can load metadata from 2 URL or a disk location

Source T Locati
i Service Behaviors ouree Type ocation
iy - - [[Conpon
£ & Endpoints
g Service Endpoints Click Import to begin metadata import

4 Adapter Endpoints

@; Workflow Endpoints
= ® Policies

7 Service Polides

3 Adapter Policies

@ Messaging
5 Repository

W Security
g Deployment
G Activity

Minimize the Neuron Explorer and open Visual Studio. Create a WCF Service Library Project called
LocationTransparencyDemo.

- .
New Project [2 [

Search Installed Templates (Ctrl+E) P~

b Recent | .NET Framework45 | Sort by: | Default -

4 Installed [.
WCF Service Library Visual C# Type: Visual C#

4 Templates o A project for creating 3 host-independent
4 Visual C# 'WCF Service Application Visual C# WCF service class library (.dll)

Windows

I Web

Extensibility

Office/SharePoint

Cloud

Infragistics

LightSwitch

Reporting

Silverlight

Test

WCF

Workflow
Windows Installer XML
TypeScript

I Other Languages

b Other Project Types

'WCF Werkflow Service Application Visual C#

-

2882

Syndication Service Library Visual C#

Samples
b Online
Click here to go online and find templates.
Name: |LocatlonTransparancyDemo |
Location: |C:\temp v| [Browse...]
Solution name: LocationTransparencyDemo Create directory for solution

[] Add to source control

This will create a solution and project that will automatically host a service when you press Ctrl-F5 and
start the WCF Test Client.

- ™
B8 WCF Test Client = [E s
File Tools Help
=3 My Service Projects

Start Page
hitp:/Aocalhost:8733/Design_Time _Addr

= "E |5ervice1 (BasicHitp Binding_|Service
@ GetDatal)
€3 GetDataAsync()

To add a service:

. Select “Add Service” from the File menu or the context menu of the "My Service Projects"
@ GetDatalsingDataContract() . Enter the service metadata address in the input area, and click "OK"
g GetData UsingDataContract Async
[Config File

To test a service operation:

. Double click the operation you want to test from the tree on the left pane
. Anew tab page will appear on the right pane

. Enter the value of parameters in the Request Area of the right pane
. Click "Invoke" button

1| 1 |

Service added successfully.

Copy the Address in the WCF Test Client.

p
Em WCF Test Client

Eile

Tools Help

4

= My Service Projects
=R} hitp//localhost : 8733,

|| Start Page |

Refresh Service

Remove Service

To add a service:

GetDataAsync()

Copy Address

Select “Add Service™ from the File menu or the context menu of the "My Service Projects”

Enterthe service metadata address in the input area, and click "OK"

@ GetDatalUsingD:

- Config File

mn

GetDatallsing DataContract Async

To test a service operation:
. Double click the operation you want to test from the tree on the left pane

. A new tab page will appear on the right pane
. Enter the value of parameters in the Request Area of the right pane
. Click "Invoke" button

Service added successfully.

Restore the Neuron Explorer window and paste the Service address into the Location test box. Neuron

can utilize MEX or WSDL
e

-
@ Neuron ESB Explorer
P

File View Tools Help
[&%~ @ Rumning - o) Bl | Configure Server | Category Filter -

You are working online. LocationTransparency

0 0 po e e dpo
= ® Tasks
Import Service Endpoint
< Import a Service Retrieve Web Transformation Description Language (WSDL) and XML Schema (¥5D) Metadata

= # Connection Methods

@ Adapter Registration Step 1: Identify Source
< Service Bindings You can load metadata from a URL or a disk location
- N Source Type Location
i§ Service Behavior
URL - ‘ | http: /flocalhost:8733/Design_Time_Addresses/LocationTransparencyDemoy/Service 1fmex ‘ I:l |_“Im ot |

£ = Endpoints
g Service Endpoints
4 Adapter Endpoints
f@}; Workflow Endpoints

Click Impart to begin metadata import

£ & Polices
3 Service Policies
&% Adapter Policies

3 Messaging
g Repository

@ Security

‘{y& Processes
g Deployment
G Activity

Click the Import button to the right of the ellipses.

-
‘4 Neuron ESB Explorer

File View Tools Help

4 @~ | @ Ruming ~ o) MM | Configure Server | Category Filter

El ® Tasks
3 Import 3 Service
= = Connection Methods
@7 Adapter Registration
g Service Bindings
i Service Behaviors
£ # Endpoints
g Service Endpoints
4 Adapter Endpoints
@; Workflow Endpoints
= ® Policies
& Service Policies
43 Adapter Policies

@ Security
‘y" Processes

‘You are working online. LocationTransparency

Import Service Endpoint

Retrieve Web Transformation Description Language (WSDL) and XML Schema (X5D) Metadata

Step 1: Identify Source
You can load metadata from 2 URL or a disk location

9 Messaging
g Repository

Source Type Location

URL -] | http:/flocalhost:3733/Design_Time_Addresses/LocationTransparencyDemo/Service 1/mex ;] [Cimpart
Import Successful
Step 2: Confirm and Save Service Name: | mex | | Save |
Import the elements below by dicking Save

Type Name Details

WSDL Service Definit... http:/localhost:8733/Design_Time_Addresses/LocationTr...

Service Endpaint http:/flocalhost:8733/Design_Time_Addresses/LocationTr... http:/ftempuri.org/IService 1, BasicHttp, SOAP 1.1

Schema http:/ftempuri.org/

Schema http: /fschemas. microsoft.com/2003{10/Serialization

Schema http:/fschemas.datacontract. org/2004/07/LocationTrans. ..

g Deployment

G Activity

L

Notice the artifacts imported.

Rename the Service MyFirstimportedService and then click the Save button to the right of the Service

Name dialog.

=
i@y Neuron ESB Explorer

e

File View Tools Help

[&%~ @ Rumning - o) Bl | Configure Server | Category Filter =

=l = Tasks

3 Import & Service

=l # Connection Methods
4l Adapter Registration

g Service Bindings

You are working online. LocationTransparency

Import Service Endpoint
Retrieve Web Transformation Description Language {WSDL) and XML Schema (%SD) Metadata

Step 1: Identify Source
You can load metadata from a URL or a disk location

Source Type Location

i§ Service Behavior
5 Endpoints
g Service Endpoints
4 Adapter Endpoints
fg}; Workflow Endpoints
= = Policies
& Service Policies

&% Adapter Policies

g Repository

'y Processes

9 Messaging

URL o ‘ | http:/localhost:8733/Design_Time_Addresses/LocationTransparencyDemo/Service 1jmex

]

Import Successful

Step 2: Confirm and Save Service Name: | MyFirstimportedService [
Import the elements below by dicking Save

Type Mame Details

WSDL Service Definit... http:/flocalhost:8733/Design_Time_Addresses/LocationTr...

Service Endpoint http: /flocalhost:8733/Design_Time _Addresses/LocationTr... http:/ftempuri.org/IService1, BasicHttp, SOAP 1.1

Schema http:/ftempuri.org/

Schema http:/fschemas. microsoft,com/2003/10/Serialization/

Schema http:/fschemas.datacontract. org/2004/07/LocationTrans. ..

@ Security

g Deployment

G Activity

L

Click OK at the prompt informing you about imported artifacts.

[

Save Complete

@ Mew Service, WSDL, and XML Schema Entries have been added to the

configuration.

This will take you back to the import screen. Click the Service Endpoints option

(=
%y Neuron ESB Explorer

File View Tools Help

B & ®Ruming - [o [l | Configure Server | Category Filter -

0 0

El ® Tasks
g Tmport 3 Service

= = Connection Methods
4’ Adapter Registration
g Service Bindings

iy Service Behaviors

@) service Endpaints

Q% Workflow Endpoints
= ® Policies

< Service Polidies

4 Adapter Polices

[Q Messaging
g Repository

o~ o
@ Security
‘y" Processes

5 Deployment
e Activity

‘You are working online. LocationTransparency

apo
.
[|New [/ Copy (3 Delete | [¥)Show Detail
| || ame | cateqory | zone | inding Cient Address | Service Address | o]
b <@ MyFirstimportedService Enterprise ~ BasicHtip http:/flocalhost:3733/Design_Time_Addresses /| ocationTransparencyDemo/Service 1f
1ofl

Modified .:

Notice your new Service is listed in the main panel. Notice also that the target Service Address is filled in
but the Client Address is not. This is because this service endpoint is going to call a Web service, not

host one. We will be creating a client connector next.

Click on your new service in the main panel.

pu
"t Neuron ESB Explorer

File View Tools Help
=] ~ | @ Running ~ o M | Configure Server | Category Fiter -

‘You are working online. LocationTransparency

® Tasks
g Look For: Find

g Tmport 3 Service
O s Connection Methods ||| New [/ Copy 3 Delete
4’ Adapter Registration | ‘ Name | Cateqory
< Service Bindings] yi 49 MyFirstimportedService

Hide Detail

| Zone | Binding Cient Address | Service Address

iy Service Behaviors

© ® Endpoints

Viewing Service MyFirstimportedService | [0

g Service Endpoints 73 Apply () Cancel | Bindings
4 Adapter Endpoints
General Binding Security Client<T> Client Connector | Service Connector | Proxy Settings
@; Workflow Endpoints
= ® Policies Enable Service Endpoints
<y Service Policies Name: MyFirstimportedService
3 Adapter Policies Desipon: m
Category: - Bindng: [Basicitp -]
Zone: - Behavior: -
@ Messaging o Enterprise] e []

5 Repository

W Security
‘y" Processes
g Deployment 1ofl

G“m"m’ Al # A B € D E F 6 H I 1 K L M N OGP QR 5 T U V W X Y 2

| Modified

Now click on the tab that says Client Connector

pu
"t Neuron ESB Explorer

File View Tools Help

=] ~ | @ Running ~ o M | Configure Server | Category Fiter -

‘You are working online. LocationTransparency

® Tasks
g Look For: Find

g Tmport 3 Service
O s Connection Methods ||| New [/ Copy 3 Delete

Hide Detail

| Service Address

57 Adapter Registration || Neme | catcoory | zone | Binding Client Address

< Service Bindings | 1yFirstimportedService

iy Service Behaviors

= = Endpoints
g Service Endpoints 73 Apply () Cancel | Bindings

Adapter Endpoints ¢
@ i Po General | Binding | Security Client<T= | Client Connector || Service Connector | Proxy Settings

Viewing Service MyFirstimportedService | [0

@; Workflow Endpoints

E # Policies [] Enable Client Connector [] Capture custom headers
[-] Max Concurrent Calls: 208

7 Service Polides Publisher Id:

&% Adapter Policies Tapic .

Max Concurrent Instances: 1008

Max Concurrent Sessions: 800

LRL:

& Metadata

@ Messaging
5 Repository

W Security

‘y" Processes

g Deployment 1ofl

G Activity Al # A B C D E F G H I J K L M N O P Q R 5 T U V W X Y

Modified

Perform the following:

e Check Enable Client Connector

e C(Click the Publisher Id dropdown and select Publisherl

e Click the Topic dropdown and select Topicl

e Inthe URL textbox type in http://localhost:8080/locationtransparency

(=
‘4 Neuron ESB Explorer

File View Tools Help

H - @ Ruming - [0 [l | Configure Server | Category Filter -

‘You are working online. LocationTransparency

= = Tasks lerssrs

g Import a Service
New [| Copy (9 Delete (] Hide Detail

= = Connection Methods
| Zone ‘ Binding Client Address Service Address

‘ Name | Category

&' Adapter Registration |
g Service Bindings 4 e Enterprise | B http:/flocalhos

iy Service Behaviars

LocationTransparencyDem

© = Endpoints

Editing Service MyFirstimpartedservice [0

g Service Endpaints 2 Apply (D) Cancel | Bindings
Adapter Endpoints .
@ Adap ma General | Binding | Security Client<T> | Client Connector | Service Connector | Proxy Settings
E@; Workflow Endpoints
E ® Policies Enable Client Connector | Capture custom headers
< Service Polides Publisher Id: [Publ\sherl -] Max Concurrent Calls:
4} Adapter Palicies Topic: Topict - Max Concurrent Instances:
URL: hittp:/localhost:3080locationtransparency Max Concurrent Sessions:

[Metadata

N ? Messaging
g Repository

@ Security

AT
'1;&, Processes

g Deployment lofl

skﬁviw Al # A B € D E F € H I 31 K L M

Modified .;

http://localhost:8080/locationtransparency

Click the Service Connector tab and perform the following:

e Check Enable Service Connector
e Click the Subscriber Id dropdown and select Publisher2
e Click the Policy dropdown and set the policy to <None>

(=
%y Neuron ESB Explorer

File View Tools Help

B & ®Ruming - [o [l | Configure Server | Category Filter -

‘You are working online. LocationTransparency
0 0

El ® Tasks LogkFor-

g Tmport 3 Service
New [Copy (3 Delete |[%]Hide Detail

=l ® Connection Methods
Client Address

| catcoory | zone | Binding

4’ Adapter Registration | ‘ Name

g Service Bindings | 1yFirstimportedService

iy Service Behaviors

| Service Address

© ® Endpoints

Editing Service MyFirstimportedService | [0

g Service Endpoints &3 Apply (D) Cancel | Bindings

Adapter Endpoints
@ i Po General | Binding | Security Client<T= | Client Connector ‘ Service Connector | Proxy Settings
@; Workflow Endpoints

= = Policies Enable Service Connector [| Restore custom headers

< Service Polides Subscriber Id: [Pubhshyz v] [single instance

Adapter Policies "
a5 Adap Policy: [<Nme> ‘] Allow connection reuse

URL: http:/flocalhost:8733/Design_Time_Addresses,LocationTransparencyDemo Service 1/

Failover URL(s):

3 Messaging
g Repository

m Security

P processes
g Deployment 1ofl
G Activity Al # A B C D E F 6 H I J K L M N O P Q R 5 T U V
Modified .:

L

Click Apply and then Click Save.

Minimize Neuron Explorer and return to Visual Studio. Add a new project of type Test to the solution.

e - N
Add New Project [P [tz

Search Installed Templates (Cirl+E) P-

P Recent | .NET Framework45 | Sort by: | Default

4 Installed Type: Visual C#

Unit Test Project

4 Visual C# A project that contains unit tests.
Windows I

b Web

Extensibility

Office/SharePoint

Cloud

Infragistics

LightSwitch

Reporting

Silverlight

Test

WCF

Workflow

Windows Installer XML

TypeScript

-

b Other Languages
b Other Project Types

b Online

Click here to go online and find templates.

Name: UnitTestProjectl

Location: Ctemp'LocationTransparencyDemo v| [Browse...]

Right-click on the service project and select Add->Service Reference. In the Add Service Reference
dialog, click the Discover button to automatically add the WCF service. Change the Namespace to Proxy
and press the OK button.

Add Service Reference l 7 S

To see a list of available services on a specific server, enter a service URL and click Go. Te browse for available
services, click Discover.

-

Address:
http://localhostB733/Design_Time_Addresses/LocationTransparencyDemo/Servi - ’ Go] ’Qiscover vl
Services: Operations:

I (& g2’ Design_Time_Addresses/Locatio

Select a service contract to view its operations.

4 | i r

1 service(s) found in the solution.

Namespace:

Proxy

[

Add using UnitTestProjectl.Proxy; to the usingsection atthe top of the UnitTestl.cs file.

Add the following code to the generated TestMethod1:

Console.WritelLine (new ServicelClient () .GetData (42));

Open the App.config file in the UnitTestProjectl project and edit the client endpoint so it uses the
address of the Neuron Client Connector instead of connecting to the service directly (modify the
highlighted element below):

<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="BasicHttpBinding_IServicel" />
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://localhost:8080/locationtransparency"”
binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_IServicel"
contract="Proxy.IServicel" name="BasicHttpBinding_IServicel" />
</client>
</system.serviceModel>

Reset the project and ready it for recompile by stopping the running WCF Service Host. You can usually
do this by right-clicking the gear icon in that appears in your taskbar and selecting Exit.

@D @
A =
Open)
IJiI| Exit | g
6 = o &
Customize...

Press F6 to build the solution and then press Ctrl-F5 to restart everything. Minimize the WCF Test Client

If you do not already have the Test Explorer available use the VS Menu to make it available by navigating

to Test>Windows>Test Explorer.

Switch to Test View. Highlight TestMethod1, right click and choose Run Selected Tests. After a pause for

startup of the test harness you should see the method run and pass

D LocationTransparencyDemo - Microsoft Visual Studio (Administrater) £ Y1 QuickLaunch (Ctrl+Q) P - 8 x
EILE EDIT VIEW PROJECT EBUILD DEBUG TEAM TOOLS TEST INFRAGISTICS ANALYZE WINDOW HELP Joe Klug ~
[0-0|B- G| 9-C-|bswm- ¢ [oma || A GE |50 - ;
4
W Test Explorer >0 x s ; p
£ T £ - | % UnitTestProjectt UnitTestt -|@ TestMethod1(g @ e-ena@m| &=
Slusing System; = .
RunAll | Run.. v | Playlist: All Tests using Microsoft.VisualStudic.TestTools.UnitTesting; [Seerch Solution Explorer (Ctrl+;) P~
using UnitTestProjectl.Proxy; 4 LocationTransparencyDemo o
4 Passed Tests (1) . . I b & Properties
@ TestMethodl 569 ms —Inamespace UnitTestProjectl b =m References
[TestClass] ¥ App.config
= public class UnitTestl b &= Benvicel.cs
{ b c* Servicel.cs
TestMethod 4[] UnitTestProjectl
[1 1) J
= public veid TestMethodl{) b & Properties
1 b =@ References
Console.Mriteline(new ServicelClient().GetData(42)); b Service References
¥ app.config
¥ b o= UnitTestl.cs -
H
Code Analysis BEITGILYSHIEIEY Team Explorer
Properties i x
TestMethod1
Source: UnitTestl.cs line 12
@ Test Passed - TestMethod1 -
Elapsed time: 569 ms ~
L M R »

ErrorList OQutput Find Symbeol Results

Build succeeded

Congratulations you have run your first Web Service Scenario through Neuron!

At first glance this may not seem particularly beneficial from a SOA standpoint because we essentially

have a 1-1 mapping of endpoint to client.

But, this simple use of an intermediary can be used to evolve your SOA infrastructure. At this point you
have prepared yourself to accomplish the following without requiring any changes to the client or the

target service

e Move the service address

e Change the Service Binding

e Insert Transforms or custom code

e logall request and replies

e Broadcast any part of the conversation to interested subscribers
e Insert failover or retry logic

e Use a queued channel for durability

e Insert security logic that guards the target service

e Introduce validation logic

e Migrate to an On Ramp

That'’s a pretty powerful list of opportunities for such as simple starting point.

Logging
Logging can be an invaluable tool in understanding your services flow and troubleshooting. We will now
examine the logs created by the previous exercise.

Navigate to the logs subdirectory under the Neuron ESB program files folder. There will be a separate
subfolder for each Neuron instance you install. If this is your first time working with Neuron, you
probably only have a DEFAULT instance installed. You should see multiple subdirectories that
correspond to the number of times you’ve restarted the Neuron ESB service

SARCE X
@-\—/\vl » Computer » Local Disk (C) » Program Files » Neudesic » Neuron ESEwv3 » logs » DEFAULT » T ,O‘
Organize v Include in library + Share with v New folder =~ il E@l

. Microsoft SQL Server Compact Edition * Name Date modified Type Size

Microsoft Sync Framework
| 20141006T082442

. 20141006T082332
20141006 T074503

o File folder
| Microsoft Synchronization Services

. Microsoft Visual Studie 10.0
Microsoft Visual Studio 12.0

. Microsoft.NET

2 MSBuild

File folder
File folder

Neudesic
Neuron ESB v
| DEFAULT

Does
! logs
DEFAULT

PowerShell

m

| Samples
. Snippets
Sql
. Palo Alto Networks
. Realtek
Reference Ascemblies
. SharePoint Client Cempoenents
. Uninstall Information
Windows Defender
. Windows Identity Foundation
Windows lnurnal

3 items

Sort the directories in reverse order so the latest directory is on top. Navigate to that directory.

e
@-\—/\vl <« Local Disk (C:) » Program Files » MNeudesic » NeuronESBv3 » logs » DEFAULT » 20141006T082442 - | +3 | | Sean pel |
Organize v Include in library + Share with v New folder =~ il E@l
. Microsoft Analysis Services o Name Date medified Type Size
Microsoft Forefront N .)
. =% Enterprise_ClientConnector_MyFirstimportedService.config XML Configuratio... 10 KB
| Microsoft Help Viewer
| Enterprise_ClientConnector_MyFirstimportedService-2014-10-06.log Text Document 3KB
. Microsoft Identity Extensions)
] | Enterprise_Configuration Service-2014-10-06.lag Text Document 1KB
Microsoft Office
| Enterprise_Control Service-2014-10-06.log Text Document 1KB
| Microsoft Silverlight N 3)
59 Enterprise_Management Service.config XML Configuratio... 10 KB
. Microsoft SQL Server ;
» | Enterprise_Management Service log-2014-10-06.lag Text Document 2KB
Microsoft SQL Server Compact Edition
| Enterprise_Msmaq Receive Service-2014-10-06.log Text Document 1KB
| Microsoft Sync Framework N 3)
=g Enterprise_Peer Resolver Service.config XML Configuratio... 10 KB
. Microsoft Synchronization Services
’ | Enterprise_Peer Resolver Service.log-2014-10-06.log Text Document 2KB
Microsoft Visual Studio 10.0 y ~ R
=9 Enterprise_ServiceConnector_MyFirstimportedService.cenfi XML Cenfiguratio... 10KE
- = P! o P 9 9
. Microsoft Visual Studio 12.0
| Enterprise_ServiceConnector_MyFirstimportedService-2014-10-06.log Text Document 2KB
. Microsoft.NET =)) . o . ~
VSl _| [Enterprise_TCP Publishing Service Topicl.config XML Configuratio... 10 KB
Noud "| _ Enterprise_TCP Publishing Service_Topicl-2014-10-06.leg Text Document 3KB
. Neudesic
| Master Service-2014-10-06.log Text Document 4 KB
Meuron ESB v3
DEFAULT
. Decs
. logs
DEFAULT
. 20141006T074503
J 201410067082332
20141006T082442
. PowerShell
Samnples =2
14 items
|

If you have named your service as instructed you should see a log for your Client Connector named
Enterprise_ClientConnector_MyFirstimportedService-{Todays Date}.log and a log for your Service
Connector named Enterprise_ServiceConnector_MyFirstimportedService-{Todays Date}.log

If you have configured logging for maximum verbosity as you were instructed to earlier in this training
you will see a wealth of information in both logs including the full SOAP packet.

These logs can be used for gathering packet knowledge for Transforms and for troubleshooting.

Return to Visual Studio and the LocationTransparencyDemo solution. If the WCF Service Host is still
running, shut it down. Open Test View and run TestMethod1 again. Wait a minute for the expected

failure to occur.

Navigate back to the logs folder pictured above, open the Enterprise_ ServiceConnector_
MyFirstimportedService-{Todays Date}.log and scroll towards the bottom. You should see something
similar to a stack trace that begins like this:

2014-10-06 08:29:42.243-04:00 [11] WARN - Communication exception. There was no endpoint
listening at http://localhost:8733/Design Time Addresses/LocationTransparencyDemo/Servicel/ that

could accept the message. This is often caused by an incorrect address or SOAP action. See
InnerException, if present, for more details.

2014-10-06 08:29:42.278-04:00 [11] DEBUG - Message:
Exception Type: System.ServiceModel.EndpointNotFoundException

Exception Message: There was no endpoint listening at
http://localhost:8733/Design Time Addresses/LocationTransparencyDemo/Servicel/ that could accept

the message. This is often caused by an incorrect address or SOAP action. See InnerException, if
present, for more details.

Exception Trace:

Server stack trace:

Examine the corresponding Client Connector log.

One final note about logging before the training continues. Verbose logging is great for development
and troubleshooting but is discouraged for continuous production use. Verbose logging impacts
performance and can use considerable disk space.

Binding Mediation

Binding Mediation occurs when a client connects to an intermediary with one binding then
communicates with the target service using another binding. In this exercise, we will modify our test
project in the LocationTransparencyDemo solution so that TestMethod1’s proxy instance will
communicate using BasicHttpBinding as before and a new method we will add cleverly called
TestMethod2 will communicate using a WsHttpBinding.

Return to Visual Studio and the LocationTransparencyDemo solution. Modify the code in the Test
Project so that TestMethod1 looks like this:

[TestMethod]
public void TestMethodl ()
{
Console.WritelLine (new ServicelClient ("basic") .GetData (42));

}

Copy TestMethod1 including its TestMethod Attribute below TestMethod1. Change the 1 to a 2 on the
end of the method and change “basic” in the ServicelClient constructor to “wshttp”.

You code should now look like this.

[TestMethod]
public void TestMethodl ()
{
Console.WriteLine (new ServicelClient ("basic") .GetData (42));

}

[TestMethod]
public void TestMethod?2 ()
{
Console.Writeline (new ServicelClient ("wshttp") .GetData (42));

}

Open the app.config file and add a new binding element for wsHttpBinding. Your bindings section
should look like this:

<bindings>
<basicHttpBinding>
<binding name="BasicHttpBinding IServicel" />
</basicHttpBinding>
<wsHttpBinding>
<binding name="WSHttpBinding_IServicel">

<security mode="None" />
</binding>
</wsHttpBinding>
</bindings>

Change the client endpoint name to “wshttp”. Copy the endpoint and change the following attributes

e name="wshttp”

e address="http://localhost:8080/bindingmediation”
e binding="wsHttpBinding”

e bindingConfiguration="WSHttpBinding_IServicel”

Your client section should now look like this:

<client>
<endpoint address="http://localhost:8080/locationtransparency”
binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_IServicel"
contract="Proxy.IServicel"™ name="basic" />
<endpoint address="http://localhost:8080/bindingmediation”
binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_IServicel"
contract="Proxy.IServicel” name="wshttp" />
</client>

Return to Neuron Explorer. Navigate to Connections > Service Endpoints and click the New button in
the main panel. Click the General tab of the new Service Endpoint if it is not already chosen. You should
see something similar to below:

(= M
-ty Neuron ESB Explorer l =B g
File View Tools Help ‘

[&~ | @ Ruming -~ o) B | Configure Server | Category Filter -

‘You are reconnected in Online Mode to : LocationTransparency

Connections &~ Service Endpoints
E = Tasks .
e
g Import a Service
5 = Connection Methods Mew [7] Copy €3 Delete [Hide Detail
' Adapter Registration | | ‘ Name: | Cateqory | Zone ‘ Binding Client Address Service Address
QServiceEmd\ngs 3 .:g MyFirstimportedService Enterprise BasicHttp http: /flocalhost:8080 locationtransparency http:/flocalhost:8733/Design_Time_Addresses/LocationTransparency,
iy Service Behaviars
] 3
E = Endpoints
g Service Endpaints @App\y @Cancel Bindings Adding New Service [0
G Adapter Endpoints
General | Binding Security Client<T> Client Connector | Service Connector | Proxy Settings
£ Workflow Endpaints
E = Policies [#] Enable Service Endpaints
< Service Polides Name: Servicel
& Adapter Policies Desaphon: e
Category: General - Binding: [Easid-mp -]
@ — Zone: Enterprise v] Behavior: [-]
y Repository
@ Security
1;&’ Processes
g Deployment lof1
Gﬂcﬁvit\« Ml # A B € D E F 6 H I 3 K L M N O P Q@ R 5 T U ¥ W X Y Z

Change the text in the Name text box to MyFirstManuallyCreatedEndpoint and select WSHttp as the

Binding:

= s |

=
@ Neuron ESB Explorer

File View Tools Help

[&%~ @ Rumning - o) Bl | Configure Server | Category Filter =

You are working offiine. C:\Jsers\joe.kug\Documents leuron ESB 3\LocationTransparency

0 0 e Endpo
= * Tasks .
. B
.4 Import & Service
5 ® Connection Methods New 7] Copy (3 Delete | (%) Hide Detail
sl Adapter Registration | | Name ‘ Cateqory ‘ Zane | Bindina ‘ Client Address | Service Address

MyFirstimportedService

Enterprise BasicHttp

g Service Bindings PG
s ||| ¥ < [C— T

http:/flocalhost:8080/locationtransparency http:/localhost:8733/Design_Time_Addresses/LocationTrar)

5 Endpoints
g Service Endpoints

4 Adapter Endpoints
«

»

fgg Workflow Endpoints

Editing Service MyFirstManuallyCrestedEndpoint | [

5 s Poliges & Apply (D) Cancel | Bindings
g Service Polides General Binding Security Client<T> Client Connector | Service Connector | - Proxy Settings
% Adapter Polices
Enable Service Endpoints
Mame: MyFirstManuallyCreatedEndpaint
Description: A
9 Messaging i
g Repository Category: General - Binding: @Htﬂl ;v]
_ Zone: Enterprise v] Behavior: [v]
@ Security
‘yy Processes
g Deployment 1of1
z

GMN'“ Ml # A B C D E F G H I

L

Click the Client Connector tab and do the following:

e Check Enable Client Connector
e Click the Publisher Id dropdown and choose Publisherl
e C(Click the Topic dropdown and choose Topicl

e Enter the following address in the URL test box
http://localhost:8080/bindingmediation

Your Client Connector tab should now look like this:

http://localhost:8080/bindingmediation

— M
‘s Neuron ESB Explorer l =B g
File View Tools Help

H r_‘gv @ Running - Q BB | Configure Server | Category Filter -

‘You are reconnected in Online Mode to : LocationTransparency

El ® Tasks =
s

g Tmport 3 Service

£ ® Connection Methods New [Copy 3 Delete (%] Hide Detail
7 Adspter Registration ||| | | MName | catcoory | zone | Binding | Client Address | Service Address
3 Service Bindings b &g MyFirstimportedService Enterprise BasicHtp http: /flocalhost:8080 locationtransparency hittp:/flocalhost:3733/Design_Time_Addresses/LocationTransparency

iy Service Behaviors
‘ 3
= = Endpoints

g Service Endpoints &3 Apply (D) Cancel | Bindings Adding New Service [0

4 Adapter Endpoints

General | Binding | Security Client<T= | Client Connector | Service Connector | Proxy Settings
&g Workflow Endpoints
E # Policies Enable Client Connector Capture custom headers
<y Service Policies Publisher Id: [Pubhsharl _] Max Concurrent Calls: 208
4 Adapter Policies Topic: Tapicl - Max Concurrent Instances: 1008
URL: http:/flocalhost:8080,bindingmediation Max Concurrent Sessions: 800
Access Control List Metadata

@ Messaging
E’ Repository

@ Security
‘1#" Processes

g Deployment 1ofl

G Activity Al # A B C D E F 6 H I J K L M N O P Q@ R 5 T U V W X Y 2Z

Click Apply and Save.
Your main panel should now look like this.

[|New [/l Copy €3 Delete |[2]Hide Detail

| | | MName | Category | Zone | Binding | Client Address | Service Address

3 h,_g MyFirstimportedService Enterprise BasicHttp http: /flocalhost:8080locationtransparency http:flocalhost:8733/Design_Time_Addresses /L ocationTrar

b a,_g MyFirstManuallyCreatedEndpaint

4 I 2

Notice that the MyFirstManuallyCreatedEndpoint does not have a Service Address. This is actually a
more accurate representation of what goes on internally in Neuron then using a single Service Endpoint
to maintain the bindings for both a Client Connector and Service Connector. Client Connectors and
Service Connectors are not actually connected in any way at runtime. Messages between the two are
passed between their respective disconnected app domains using the Neuron API. When you import and
enable both the Client Connector and Service Connector in a Single Service Endpoint you are essentially
simply making sure they are set to the same WCF binding settings.

It is very common for experienced Neuron users to create the endpoints manually and split them from
the very beginning.

We are now almost ready to run our scenario. Before we do however, navigate back to the log directory.
You should now see an additional log named

Enterprise_ClientConnector_MyFirstManuallyCreatedEndpoint-{Todays Date}.log.
Examine the log to make sure everything started up correctly and then close the log.

Return to the LocationTransparencyDemo solution in Visual Studio and press F6 to compile and then
Ctrl-F5 to start the WCF Test Client. Minimize the WCF Test Client and then switch to Test View and
highlight TestMethod1 and TestMethod2, right-click and select Run Selected Tests:

D LocationTransparencyDemo - Microsoft Visual Studio (Administrater) £ Y1 QuickLaunch (Ctrl+Q) P - 8 x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST INFRAGISTICS ANALYZE WINDOW HELP JoeKlug ~
10 -0|B-QMP|9-C-| bsur- - | N G| N LiB- .
=
Wl Test Explorer > QX & p 5 0
g IEE £ - | “3 UnitTestProject] UnitTestl -|@ TestMethod2() - fiﬂ B-208 _@| 5=
1 Slusing System; = . 2
Run All | Run.. v | Playlist: All Tests « using Microsoft.VisualStudic.TestTools.UnitTesting; [Seerch Solution Explorer (Ctrl+;)
. using UnitTestProjectl.Proxy; 4 LocationTransparencyDemo -
4 Passed Tests (2) . . I b & Properties
(@) TestMethod = Sinamespace UnitTestProjectl b wm References
(¥) TestMethod2 27 ms| i L ¥ App.config
[TestClass] . ‘
= public class UnitTestl b & Benvicel.cs
{ P € Servicel.cs
[TestMethod] 4 [T UnitTestProjectl
E public veid TestMethodi{) b M Propertics
b =B References
Consele.Mriteline(new ServicelClient("basic").GetData(42)); b Service References
H ¥ app.config
b c# UnitTestl e
[TestMethod] 4 nrieses »
= public veid TestMethod2() Code Analysis BALY=TIMDY Team Explorer
Conscle.Mriteline(new ServicelClient("wshttp”).GetData(42)); [I—— > 0 x
¥ -
} =,
} EL s
Summary
Last Test Run Passed (Total Run Time 0:00:
@ 2 Tests Passed
-
4 ’

ErrorList Output Find Symbol Results

Build succeeded

Observe both tests passing. Open the Client Connector log for your manually created endpoint and
observe the difference in the SOAP envelope.

The difference you are seeing is caused by the bindings. By default BasicHttpBinding does not contain
any security and the SOAP envelope contains the bare minimum of information. WsHttpBinding on the
other hand defaults to Message Security based on the Windows Identity. This creates a large degree of
overhead especially if the actual messages you are passing are very small.

When you create an endpoint manually you are responsible for setting the security in the Security tab of
the connector to match the security you are trying to achieve with the binding you have selected.

Datagram

So far we have been using the Request-Reply Message exchange pattern exclusively during this training.
We are now going to introduce the concept of using the Client Connector as an asynchronous entry
point onto the bus.

Create a new Visual Studio Project of type Test and call it TestDatagram

N
((add New Project [2 [

b Recent [MET Framework 4.5 - | Sort by: | Default -| &= Search Installed Templates (Ctrl+E) P~

4 Installed c .
EJ Unit Test Project Visual C# Type: Visual C%

4 Visual C2 A project that contains unit tests,
Windows
b Web
Extensibility
b Office/SharePoint
Cloud
Infragistics
LightSwitch
Reporting
Silverlight
Test
WCF
Workflow
Windows Installer XML
TypeScript
P Other Languages
I Other Project Types

P Online

Click here to go online and find templates.

Name: TestDatagram

Location: Ci\temp'\LocationTransparencyDemo v| [Browse... 1

Right Click the project and Add References to System.ServiceModel and System.Runtime.Serialization:

-
Reference Manager - TestDatagram

=)

4 Assemblies Targeting: .NET Framework 4.5 Search Assemblies (Ctrl+E) 0O =
Framework Mame Version “ Name:
Extensions System.Met.Http.WebRequest 4.0.0.0 System.Runtime.Serialization
Recent System.Mumerics 4,000 Created by:
System.Printing 4,000 Microseft Corporation
b Solution System.Reflection.Context 4,000 Version:
System.Runtime.Caching 4.000 400.0
b COM Systern.Runtime.Durablelnstancing 4.0.0.0 File Version: .
P Eroee System.Runtime.Remoting 4.0.0.0 4.0.30319.18020 built by:
System.Runtime.Serialization FXASRTMGDR
System.Runtime.Serialization.Formatters.Soap 4,000
System.Security 4.0.0.0
System.ServiceModel 4000
System.ServiceModel Activation 4,000
System.ServiceModel Activities 4.00.0
System.ServiceModel.Channels 4,000
System.ServiceModel. Discovery 4,000
System.ServiceModel.Routing 4.000
System.ServiceModel. Web 4,000
System.ServiceProcess 4.000
System.Speech 4,000
System.Transactions 4,000
System.Web 4,000
System.Web.Abstractions 4,000
System.Web.ApplicationServices 4,000
System.Web.DataVisualization 4.00.0
System.Web.DataVisualization.Design 4,000
System.Web.DynamicData 4,000 -
[Browse.] | OK | [Cancel
L5 v
Use the Add New Item functionality of the project to add an App.config file:
[add New ltem - TestDatagram) [
4 Installed Sort by: Search Installed Templates (Ctrl+E) @ =
« NEEEEEEEE L;']U Class Visual CEltems Type: Visual C# ftems
;D:E " A file for storing application configuration
ata and settings values
General 0 Interface Visual C# ltems
b Web
Wi\dnws Forms Windows Form Visual C# rems
© WPF
b Infragistics User Control Visual C# tems
Reportin:
SQT Sarv:r Component Class Visual C# tems
Test
Workflow User Control (WPF) Visual C# Items
b Online About Box Visual C# Items
ADOQ.NET Entity Data Model Visual C# tems
Aero Wizard Window (WPF) Visual C# ltems
Application Configurati Visual C# ltems
Application Manifest File Visual C& tems
Assembly Information File Visual C& tems
e e e
Click here to ga online and find templates.
Name: App.config
& — e — — 4

Now add using System.ServiceModel; to the list of using statements.

Below the namespace declaration but above the class declaration insert some white space by pressing
enter and input the following code into the editor

[ServiceContract]

public interface IOnlyDoOneway

{
[OperationContract (IsOneWay=true)]
void OneWay (string arg);

Enter the following code into TestMethod1

ChannelFactory<IOnlyDoOneway> oneway = new ChannelFactory<IOnlyDoOneway> ("oneway");
IOnlyDoOneway proxy = oneway.CreateChannel ();
proxy.OneWay ("I love asynchronous communication!");

Add the following entry into the App.config file and inside of the existing configuration node:

<system.serviceModel>

<client>
<endpoint address="http://localhost:8080/datagram" binding="basicHttpBinding"
bindingConfiguration="" contract="TestDatagram.IOnlyDoOneway"
name="oneway" />
</client>

</system.serviceModel>
Save all, compile the solution but do not attempt to run it yet.
Restore Neuron Explorer.

Complete the following steps (Hint: the names of the entities below are using the default when just
hitting New):

e Add a new Topic called Topic2

e Add a new Publisher called Publisher3 that subscribes to Topic2 (Send + Receive)
e Add a new Publisher called Publisher4 that subscribes to Topic2 (Send + Receive)
e Save

Now, navigate from the Messaging tab back to Connections > Service Endpoints and click New on the
main panel. Change the name in the General tab to MyFirstDatagramService:

-
"y Neuron ESB Explorer

File View Tools Help
E /\-Ev @ Running ~ _g BB | Configure Server | Category Filter S
You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3YLocationTransparency
Connection Service Endpoints
= ® Tasks
Find
g Tmport 3 Service
£ ® Connection Methods New [Copy (3 Delete |[%]Hide Detail
57 Adapter Registration | || Neme | cateaory | zone Binding | Client Address | Service Address r
< Service Birdings b g MyFirstimportedService Enterprise BasicHttp http:/flocalhost:3080locationtransparency htp: /flocalhost:8733/Design_Time _Addresses/Locatior]
jj Service Behaviors b g MyFirstManuallyCreatedEndpoint ~ General Enterprise WSHttp http:/flocalhost:8080/bindingmediation -
] »
= = Endpoints
g Service Endpoints &3 Apply (D) Cancel | Bindings Adding New Service [0
4 Adapter Endpoints
General | Binding Security Client<T> Client Connector | Service Connector | Proxy Settings
@; Workflow Endpoints
B = Policies [¥] Enable Service Endpaints
< Service Policies Name: MyFirstDatagramService
3 Adapter Policies Desipon: Y
Category: General - Binding: | BasicHittp -]
Zone: - Behavior: -
@ N —_—] chavior: |)
g Repository
@ Security
w T
g Deployment 2of2
Gm"'“‘ Al # A B € D E F G H I 1 K N O P Q@ R 5 T U V W Y oz

Click the Binding tab and change the Messaging Pattern to Datagram

-
‘s Neuron ESB Explorer

File View Tools Help

H r_‘gv @ Running - Q B8 | Configure Server | Category Fl\berS

You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3YLocationTransparency

[l ® Tasks .
o
g Tmport 3 Service
£ ® Connection Methods New [Copy (3 Delete |[%]Hide Detail
57 Adapter Registration | || Neme | cateaory | zone Binding | Client Address | Service Address =
< Service Birdings b &g MyFirstimportedService Enterprise BasicHtin hitp: /flocalhost:8080 locationtransparency http: /flocalhost:8733/Design_Time_Addresses/Locationi]
L:‘-i Service Behaviors 3 q—; MyFirstManuallyCreatedEndpaint ~ General Enterprise WSHttp http:/flocalhost:8080/bindingmediation -
] 3
= = Endpoints
g Service Endpoints &3 Apply (D) Cancel | Bindings Adding New Service [0
4 Adapter Endpoints
General Binding Security Client<T> Client Connector | Service Connector | Proxy Settings
&g Workflow Endpoints
= ® Policies
< Service Policies Messaging Pattern: [patagram x] R NjA
Adapter Policies
qﬁ Custom Configuration File: G Transactions: [Nnne v]
Max Message Size: 1000000 Keep Alives Enabled
[Use raw body
@ Messaging
E’ Repository
@ Security
‘1#" Processes
g Deployment 2of2
G,m,,m, Al # A B € D E F 6 H I 1 K L M N OUP QR S T UV W X z

Click the Client Connector tab and do the following:

e Check Enable Client Connector

e C(Click the Publisher Id dropdown to select Publisher3

e Use the Topic dropdown to select Topic2

e Enterhttp://localhost:8080/datagram into the URL textbox

Click Apply and then Save the configuration. Navigate back to the logs directory and examine the newly

created log for your new endpoint.

http://localhost:8080/datagram

Now, use the Tools menu in Neuron Explorer to launch a Test Client and connect as Publisher4:

_ ™
% Neuron Test Client - Publisher4 (20268) [ESREER™

File Message Tools Help

Connect |Send I Receive I Message History I Debug I Errors |

Party Id: Publisher4 B

Run in Bulk Test Mode [T Transacted
Subscriptions
Topic Direction Status Transport
Topic2 Send, Receive ONLINE Tep

Sent:0 - 0.00/sec Recw:0 - 0.00/sec

Switch back to Visual Studio and prepare to run TestMethod1:

B LocationTransparencyDemo - Microsoft Visual Studio (Administrator) §3 Y1 QuickLaunch [Ctrl+Q) Pl - O x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM TOOLS TEST INFRAGISTICS ANALYZE WINDOW HELP Joe Klug ~

io-0|B-2a@dE|92-C - pstan-o- E | | m i - -

Test Explorer Bl Acp.config & X UnitTestl.cs app.config UnitTestl.cs IServicel.cs

Solution Explorer
2xnl version="1.8" enceding="utf-8" > =
+ | Search P - < & -e0a;
Si<configuration> @l e-eam| &=

) =l <system.serviceModel> Search Solution Explorer (Crl+;) P -
Run All | Run..w | Playlist: All Tests = 2

» |-}

<client>
. Gpe
<endpoint address="http://localhost:3680/datagran” binding="basicHttpBinding” fa] Solution ‘LocationTransperencyDemo’ @ ¢
4 [LocationTransparencyDemo

bindingConfiguration="" contract="TestDatagram.IOnlyDoOneway™
name="oneway" /> b & Properties
</client> b =B References
</system.serviceModel> ¢ App.config
</configuration> b e* [Servicel.cs

4 Passed Tests (2)
@ TestMethodl Sms
@ TestMethod2 27T ms
4 Not Run Tests (1)

Run Selected Tests
Debug Selected Tests

b c# Servicel.cs
4 [T TestDatagram
b & Properties

Group By 4 b =m References
Add to Playlist 3 ¥ App.config
b c# UnitTestl.rs e
! Copy Ctrl+C
& Select Al Ctrl+A [t e Solution Explorer Rl o
Open Test F12 Properties - 1 x
XML Document -
S| &
Encoding Unicode (UTF-8)
Output
Schemas *C:\Program Files (x86)\
Stylesheet
TestMethodl
Source: UnitTestLes line 18
Encoding
|| Character encoding of the document.
4 ’

Error List Output Finc mbol Results

Ready

Run the test.

Restore the Test Client and switch to the Receive tab:

f ™
(% Neuron Test Client - Publisher4 (20268)])

File Message Tools Help

| Message History I Debug I Errors|

| connect | send

Topic Topic2

From Publisher3

Message View Customn Properties

£ <CneWay xmlns="http://tempuri.org/"><arg>I love asynchromn: -

< 1] 3

[Clear] [Copy] [Save Body] [Save Message]

Sent:0 - 0.00/sec Recw:1 - 1.00/sec

Now switch to the Message History tab and view the properties.

IS a)

% Neuron Test Client - Publisher4 (20268) =aaen X

File Message Tools Help
Message History | Debug | Errors

Mumber of messages to store in memory 10

History Message Header View Custom Properties
Action Message Id Property Value -
Receive | 363212f9-0d65-4 Default Properties

Action http: f{tempuri.org/I0nlyDoOnew:
Binary False

BodyType textxml

CompressedBodySize 30

CompressionFactor 1:1 -
« [T B b
Message Body

<OneWay xmlns="http://tempuri.org/™ -

« [Lm r 1 [a T G

Sent:0 - 0.00/sec Recw:1 - 1.00/sec

By now it should be obvious that crafting a WCF client to send messages to Neuron asynchronously is a
straightforward process.

Asynchronous communications are often underutilized in SOA implementations because developers are
either unaware of the benefits, are uncomfortable with not receiving a reply or simply used to
traditional request-response message patterns that are encouraged by the tools they use to generate
services and proxies.

This is unfortunate because designing processes to be asynchronous usually leads to other choices that
create a more loosely coupled, scalable architecture.

Routing, Versioning and Transformation

At the end of this section of the training you will be equipped with an understanding of Neuron as an
intermediary that will provide you with the foundation to tackle some of the most common challenges
facing organizations today as more and more of their infrastructures are built using web services.

Before we begin though let’s take a slight detour and dive into a discussion of versioning. What is
versioning? Usually you want one of two things to happen with versioning. Either you want to deploy a
version of the service and be able to route old clients to the old service and new clients to the new
service. Or, you want to be able to deploy a new service at the original address and be able to transform

packets coming from old clients as they are delivered to the updated service. So versioning then at
runtime either involves routing or transformation or in rare cases both.

Open Visual Studio and create a new Blank Solution called RoutingVersioningTransformation.

New Project . P
b Recent ‘NET Framework4.51 .| Sort by: |Dafau|t Search Installed Templates (Ctrl+E) P~
4 Installed .
I o | Blank Solution Visual Studio Solutions Type: Visual Studio Solutions
4 Templates Create an empty solution containing no
& Visual G projects

Windows Installer XML
TypeScript
I Other Languages
4 Other Project Types
Extensibility
Setup and Deployment
Wisual Studio Selutions

Samples

P Online

Click here to go online and find templates.

Name: RoutingVersioningTransfarmation

Location: |C:\temp -| [Browse...

Solution: |Create new solution -|

Solution name: /| Create directory for solution
[] Add to source control

Cancel |

Proceed to do the following in the Blank Solution

Create a Class Library project called Contracts

Create a Class Library project called Interfaces

Create a Class Library project called Services

Create a Console Application called TestHost

Create a Test Project called Tests

In the Interfaces Project add a reference to the Contracts Project

In the Services Project add a reference to the Contracts and Interfaces Projects

In the TestHost Project add a reference to the Contracts, Interfaces and Services Projects.

Lo N R WNRE

If it doesn’t already exist, add an application configuration file to the TestHost Project

=
o

. Remove the generated Class1.cs files from the Class Library projects.

[Eny
[N

. Add references to System.ServiceModel and System.Runtime.Serialization to all of the projects
with the exception of Tests. (We will use the Test Host once it is built to generate proxies to use
for our test runs.)

12. Set TestHost as the Startup project

Your project structure should look similar to this:

Selution Explorer * o x
@ o-20anm| &=
Search Solution Explorer (Ctrl+;) P~

fa] Solution 'RoutingVersioningTransformation' (5 projects)
[Contracts
[Interfaces

Code Analysis [ellliLEsll2d Team Explorer

Add a CodeFile to the Contracts project. Rename it ExampleMessageContracts.cs. Insert the
following code:

using System.ServiceModel;
using System.Xml;
using System.Xml.Serialization;

namespace Contracts
{
[MessageContract (IsWrapped=true)]
public class ExampleRequest
{
[MessageBodyMember (Order=0)]
[XmlElement (IsNullable=false)]
public string ParameterOne;

[MessageBodyMember (Order = 1)]
[XmlElement (IsNullable = false)]
public int ParameterTwo;

}

[MessageContract (IsWrapped = true)]
public class ExampleResponse
{
}
}

Add another CodeFile to the project. Rename it ExampleDataContracts.cs.

Insert the following code:

using System.Runtime.Serialization;

namespace Contracts
{
[DataContract (Namespace="http://datacontract/example")]
public class ExampleDcRequest
{
[DataMember (IsRequired=true,Order=1)]
public string Argumentl;

[DataMember (IsRequired=true,Order=2)]
public int Argument2;

That’s it for the Contracts for now. Later we will return to this project and alter the DataContract above
to simulate a typical versioning scenario.

Switch to the Interfaces Project and insert a CodeFile. Rename it IExampleMessageContractinterface.cs.
Insert the following code:

using System.ServiceModel;

using Contracts;

namespace Interfaces
{
[ServiceContract (Namespace="http://totalcontrol/services/")]
public interface IExampleMessageContractInterface
{
[OperationContract (Action="http://totalcontrol/example/request",
ReplyAction="http://totalcontrol/example/response")]
[XmlSerializerFormat (Style = OperationFormatStyle.Document, SupportFaults = true, Use =
OperationFormatUse.Literal)]
ExampleResponse DoRequest (ExampleRequest request);

}

Add another code file and rename it to IExampleDataContractinterface.cs. Insert the following code:

using System.ServiceModel;
using Contracts;

namespace Interfaces
{
[ServiceContract (Namespace="http://datacontract/example")]
public interface IExampleDataContractInterface
{
[OperationContract]
string DoStuff (ExampleDcRequest request);
}
}

We’re done with interfaces.

Move onto the Services project. Add a CodeFile and rename it to ExampleMessageContractService.cs.

Insert the following code:

using System;

using System.ServiceModel;
using Contracts;

using Interfaces;

namespace Services
{
[ServiceBehavior (Name="MessageContractService",Namespace="http://totalcontrol")]
public class ExampleMessageContractService : IExampleMessageContractInterface
{
public ExampleResponse DoRequest (ExampleRequest request)
{

Console.WritelLine ("Received request with ParameterOne={0} and ParameterTwo={1}",
request.ParameterOne, request.ParameterTwo) ;
return new ExampleResponse();

}

Add another CodeFile and rename it to ExampleDataContractService.cs. Insert the following code:

using System;
using Contracts;
using Interfaces;

namespace Services

{

public class ExampleDataContractService :IExampleDataContractInterface

{
public string DoStuff (ExampleDcRequest request)

{

Console.WritelLine ("Received request with {0}, {1} as arguments", request.Argumentl,
request.Argument2) ;
return "Ok. I did stuff at " + DateTime.Now;

}

We're done for now with our services implementation. We will return when we simulate our versioning

scenario.

Open the Program.cs file in the TestHost project and insert the following code:

using System;
using System.ServiceModel;
using Services;

namespace TestHost
{
class Program
{
static void Main(string[] args)
{
var mchost = new ServiceHost (typeof (ExampleMessageContractService));
var dchost = new ServiceHost (typeof (ExampleDataContractService));
mchost.Open () ;
dchost.Open () ;
Console.ReadLine();
mchost.Close();
dchost.Close();

Open the App.config file for the TestHost project and insert the following between the configuration
elements:

<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="TestHostBehavior">
<serviceDebug includeExceptionDetailInFaults="true" />
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
</behaviors>
<services>
<service behaviorConfiguration="TestHostBehavior"
name="Services.ExampleMessageContractService">
<endpoint address="" binding="basicHttpBinding"
bindingConfiguration="" name="MessageContractService"
bindingNamespace="http://totalcontrol"
contract="Interfaces.IExampleMessageContractInterface" />
<host>
<baseAddresses>
<add baseAddress="http://localhost/messagecontract/" />
</baseAddresses>
</host>
</service>
<service behaviorConfiguration="TestHostBehavior"
name="Services.ExampleDataContractService">
<endpoint address="" binding="basicHttpBinding"
bindingConfiguration="" name="DataContractService"
bindingNamespace="http://generated"
contract="Interfaces.IExampleDataContractInterface" />
<host>
<baseAddresses>
<add baseAddress="http://localhost/datacontract/" />
</baseAddresses>
</host>
</service>
</services>
</system.serviceModel>

Press F6 to compile the solution, then press Ctrl-F5 to launch the TestHost. Add a Service Reference to
the Tests Project using the URL http://localhost/messagecontract/ and use the namespace
McProxy. Add another Service Reference to http://localhost/datacontract/ and use the
namespace DcProxyV1.

Shut down the Running TestHost. Your Solution artifacts should now look like the following in Solution

Explorer:
Selution Explorer > 1 X
@ o-2a &=
Search Solution Explorer (Ctrl+;) P~

I8l Solution 'RoutingVersioningTransformation’ (5 projects)
4 Contracts
b M Properties
P ®u-B References
B c# ExampleDataContracts.cs
B c# ExampleMessageContracts.cs
4 Interfaces
b M Properties
=B References
B c* [ExampleDataContractinterface.cs
P o [ExampleMessageContractinterface.cs
Services
b M Properties
=W References
B c# ExampleDataContractService.cs

[

b c# ExampleMessageContractService.cs
TestHost
I & Properties
=B References
¥ App.config
B c* Program.cs
] Tests
b M Properties
=B References
4 Service References
& DecProxyVl
& McProxy
%1 app.config
B o UnitTestl.cs

Code Analysis RIINGLESGILIES Team Explorer

Open the UnitTest1.cs file in the Tests project and insert the following using statements at the top:

8

[

using Tests.McProxy;
using Tests.DcProxyVl;

Modify TestMethod1 so it looks as depicted below and add a method named TestMethod2 that contains
the code depicted below.

[TestMethod]
public void TestMethodl ()
{

new ExampleMessageContractInterfaceClient () .DoRequest ("Gunga Galunga", 42);

}

[TestMethod]

http://localhost/messagecontract/

public void TestMethod2 ()
{
new ExampleDataContractInterfaceClient ().DoStuff (new ExampleDcRequest { Argumentl =
"request", Argument2 = 8675309 });
}

Press F6 to compile and then press Ctrl-F5 and switch to Test View. Use Test View to run the test
methods and verify functionality when calling the services directly.

Leave the TestHost running, minimize the window, open Neuron explorer and create a New
configuration:

s = M
4 Neuron ESB Explorer [E=REER)
File | View Tools Help
| New Configure Server | Category Filter -
Open = -
lution, open an existing solution or connect to a solution.
Connect...
Close
Q Save
Save As..,
-9 Export...
& Import.
Recent Selutions 3
Exit

neuronXResb

Use the File Menu to save the configuration in the folder RTV

— M
"y Neuron ESB Explorer l =68 Q

File View Tools Help

= @ Running ~ o [l | Configure Server | Category Fiter S

You are working offiine. C:\Users'joe.kug\Documents\Neuron ESB 3\RTV

_\\ Getting Started Center

= ® Tasks
% [Which area would you like assistance with? Show this page on startup
= = Publish and Subscribe
Documentation) Samples
i Tonics Fal For information about Neuron, consult the Browse the Neuron configuration and code
documentation. You'l find guidance, examples, | samples to jumpstart your knowledge of Neuron
a Publishers
and best practices., ESB.

a Subscribers
? Conditions

Neuron ESB Product Team Blog
Stay up to date with the latestinformation from
the Neuron ESB Product Team via RSS!

2 Neuron ESB Will be 2 Sponsor at the Gartner Sympasium ITxpo 2013 — Orlando, Florida

Sun, 06 Oct 2013 17:45:16 +0000

<p=>Plzase join the Neuron ESE Product Team as we showcass Neuron ESB 3, the most cost effective and easy to use application integration and web service platform, at
the Gartner Symposium/TTxpo 2013 in Orlando Fla., Oct. 6-10. Neuron ESB provides superior connectivity for a fraction of what tradition

3 Setting Ei

ronment Variables in the ESBService.exe.config file

13 O

Thu, 19 5=

<p>Normally, Neuron ESE environment variables are created and setin the ESE solution. To managed them, navigate to the Deployment tab and dick the Environment
Variables node. Occasionally you may want to create andfor set an environment variable from within the Neuron ESB service's configuration

3
g Repository W

% Changing the location of Neuron ESB log files

18 Sep 201

55 +0000

] <p=>By default, Meuron ESE creates its log files in the following directory: <Install_Diractory>NeudesicNeuron ESB v3logs Under this directory thers will be a subdirectory
w for each instance of Neuron ESB installed on the server. For example, if you installed the DEFAULT instance, its logs will be st

@ Security 4 silent Installs of Neuron ESB

o Tue, 13 Aug 2013 04:59:26 +0000
b Processes

#y <p>Every now and again we gat a requast for parforming silent instzlls with Neuron. This article will describe how to accomplish that with the Neuron 3.0.3 release and

= later. Format msiexec.exe [i <Neuron msi> <properties in the format of NAME=value; ses below> Properties Required LICENSEKEY — the

Deployment
‘3 NEURON ESB 3.0.3 UPDATE AVAILABLE! -

e Activity

Configure the following:

e Add a Topic called OnRamp

e Add a Topic called Services and two Subtopics MessageContract and DataContract

e Add a Publisher called OnRampPublisher with a Send subscription to OnRamp and “Services.*”
“ xn

To create a “.*” subscription, click on the “Add Topic” button on the top of the Subscriptions
editor:

- ™y
ZEM_ - 'gns ﬂ
‘ (D Add Topic 3 Conditions

anage b ptio or Publishe
Available Topics: Subscriptions: OnRamp
Topic Topic Permissions
@ TE Send -
@ Services.DataContract
@ Services.MessageContract
Subscription Details:
OnR:amp
Select a Condition(s):
Create a Condition(s):
[oK] ’ Cancel]
(. vy

Then either select the topic you want to add the wildcard to, or just type in “Services.*” and
click the Add button (then click Close):

Custom Topics u

Enter a custom topic. Wildcards (™) may be used:
Services,

The new wildcard topic will be added to the list of available topics. Select the wildcard topic and
add it to the Current Subscription list:

- ™y
‘{4 Subscriptions ﬁ

9 Add Topic §& Conditions

7 Manage Subscriptions for Publisherl

Available Topics: Subscriptions: OnRamp

Topic Topic Permissions
> E o - -
@ Services.DataContract & services.* [Send -

@ Services.MessageContract

Subscription Details:

OnR:amp
Select a Condition(s):

Create a Condition(s):

o [o)

Add a Subscriber called MessageContractSubscriber with a Receive subscription to
Services.MessageContract

Add a Party called DataContractSubscriber with a Receive subscription to Services.DataContract
A Client Connector with the following settings:
o Name: OnRampConnector
Binding: BasicHttp
Enable Client Connector
Publisher Id: OnRampPublisher
Topic: OnRamp
o URL: http://localhost/onramp
A Service Connector with the following settings (you may import it by using the minimized

o O O

running TestHost or configure the settings manually):
o Name: MessageContractService
o Binding: BasicHttp
o Enable Service Connector
o Subscriber Id: MessageContractSubscriber
o URL: http://localhost/messagecontract/

A Service Connector with the following settings (you may import it by using the minimized
running TestHost or configure the settings manually):

o Name: DataContractService

o Binding: BasicHttp

o Enable Service Connector

o Subscriber Id: DataContractSubscriber

http://localhost/onramp
http://localhost/messagecontract/

Save the configuration. Neuron explorer should look similar to this

o

URL: http://localhost/datacontract/

-E Neuron ESB Explorer

Ei

=]

=]

=

‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV

le View Tools Help
@ Running - o [| Configure Server | Category Fiter E

= Tasks
g Import a Service

= Connection Methods
&' Adapter Registration
g Service Bindings

iy Service Behaviars

© = Endpoints

) service Endpaints
G Adapter Endpoints
Eg;; Workflow Endpoints

= = Policies

< Service Policies

@ Adapter Policies

9 Messaging

g Repository

@ Security

'y Processes

Look For:
[“INew [| Copy (3 Delete |(¥)Show Detail
| ‘ Name | Cateqory Zone Binding Client Address | Service Address | Description
3 Q DataContractService General Enterprise ~ BasicHttp http:/flocalhost/datacontract/
3 Q MessageContractService General Enterprise ~ BasicHttp http:/flocalhost/messagecontract/
P <g OnRampConnector General Enterprise BasicHttp http: fflocalhost/onramp

30f3

g Deployment

All

Modified .:

G Activity

http://localhost/datacontract/

Switch to the Processes tab, click on the New button and select Create Process (circled in red below):

(= M
‘& Meuron ESB Explorer [E=REER)
File View Tools Help

B & @ Ruming - (o) Bl | Configure Server | Category Fl\berE

‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV

Create Process
Create Workflow...

Import Workflow...

[('? Messaging
g Repository

é@ Connections

@ Security

g Deployment
G Activity

Modified

Click the Untitled Process in the designer and change the Name in the Property pane to ChangeTopic:

™

-
"t Neuron ESB Explorer

P

Eile View Tools

Help

H - @ Ruming - [0 [l | Configure Server | Category Filter -

‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV

006

thangeTolic x]

LR IS

K | ab S Zoom » FImport & Export [EP Print [z Save []] Copy

Repository

Messaging

Connections

Security

Deployment

Activity

Pafice: e«

ChangeTopic |

Type

Step

Text

=) Process Steps

B 75y Error Handiing
E Exception
@ Rethrow

£l & Flow Contral
(D Break
@ Cancel
4 Dedision
ﬂ Execute Process
o For
2 ForEach
T Paralel

D Retry

Referenced Assemblies

m

The name of the process

Mame ‘ChangeTopic

Description

Categary General
Name

Modified

Drag a CH step onto the process:

(M
"t Neuron ESB Explorer E‘E‘g

File View Tools Help

H - @ Ruming - [0 [l | Configure Server | Category Filter -

‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV

- _ ‘ChangeTopic X] - X
@GO 00 QP =E 0 K |9 PZoom - dimpot B Export [EP Print [Save [J] Copy
D Retry B

ChangeTopic | i spit
@ Timeout
| | Transaction
| Edit Code.. T whie .
£ Remnove £ G Languages
<3
Copy C# Class
: Cut JavaScript
Paste VB.NET
Disable 1 75 Message
Add BreakPoint 1= Audit

‘ﬂ Compression

Referenced Assemblies

Mame ‘ChangeTopic

. Description
Messaging Category

General

@ Security Type Step Text

Name
The name of the process

Right click the step and choose Edit Code:

(= = M
"y Neuron ESB Explorer l = g
File View Tools Help
E ,'g- @& Running ~ _g i Configure Server | Category Filter E
‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV
_ ChangeTopic- C# * | ChangsTopic X - X;
Elay Edit View
ONEIEL EHEEEL Y
void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context)
1
.
Messaging -
Lfg] »
g Repository }
o n1 Cal 1 ch1
w Samector Line Column Description
@ Security
g Deployment
Modified .:
J

Insert the following code into the Code step

if (context.Data.Header.Action.StartsWith ("http://totalcontrol/"))

{

context.Data.Header.Topic = "Services.MessageContract";

}

{

else if (context.Data.Header.Action.StartsWith ("http://datacontract"))

context.Data.Header.Topic = "Services.DataContract";

Click the Apply button in the Code Step (circled in red above).

([
"y Neuron ESB Explorer

File View Tools Help

=

@ Running - o [| Configure Server | Category Fiter E

‘You are working offiine. C:\Users'joe.kug\Documents\Meuron ESB 3\RTV

ChangeTopic - C# X | ChangeTopic X |

- X
File Edit Wiew
= — 0
% ChangeTopic O kDAl =2 RE x B
void OnExecute(PipelineContext<Neuron.Esb.ESBMessage> context)
1} if(context.Data.Header.Action.StartsWith("http://totalcontrol/")) F'
20 1
3 context.Data.Header.Topic = "Services.MessageContract™;
4
5] else if(context.Data.Header.Action.StartsWith("http://datacontract™))
e {
7 context.Data.Header.Topic = "Services.DataContract™;
B I
9
Messaging -
[;?3 |:|] »
g Repasitory }
o ns Cal 1 ch1
C i
éd onnectons Line Column Description
@ Security
g Deployment
Modified .:

After pressing Apply, you should now see the ChangeTopic Process appear to the left of the Process
Designer in the navigation area.

Switch to the Messaging tab, select Publishers, and then select the OnRampPublisher. Click on the

Processes tab:

= s |

-
@ Neuron ESB Explorer
P

File View Tools Help

E @v @ Running -~ é

El # Tasks

/. GetStarted

El = Publish and Subscribe
[? Topics

B publishers

3B subscribers

9 conditions

=

v
m Messaging

g Repository

B8 | Configure Server | Category Filter E

You are working offine, €:\sers'joe. kug\Documents {pleuron ESB 3\RTV

Look For:

[|New (7] Copy €3 Delete Hide Detail

| Roles

| Zane

| ‘ Party Id | Category

3 a OnRampPublisher | General Enterprise | Publisher

Descrintion

N
W Connections
@ Security

Fred

'1;&, Processes

g Deployment

. Apply _:)Cancel | Bindinjs ¥ Edit Processes (7 Ecff Subscriptions Viewing Party OnRampPublisher [0
General Security I I dendie:
Process Name Direction Conditions
10f 3 selected.
All # A B C D E F G H 1 J K L M N O P Q R 5 T U w X Yy Z
Modified .:

s Activity

%

Click the Edit Processes button and add the ChangeTopic Process to the On Publish event:

Awailable Processes:

Process

riﬁ_% Processes
’ﬂ}' Manage Processes for OnRampPublisher

Selected Processes:

S

OnRampPublisher

Process

w o

Event

On Publish - |9

[==]

2

Press OK on the Manage Processes dialog, Apply the change to the Party and Save the configuration.

Configure Neuron to use the RTV configuration. Restart and use the File Menu to Close and then attach
in Connect mode.

— N
4 Neuron ES8 Explorer [E=SRE=E)
‘a pl

File View Tools Help

[&%~ @ Rumning - o) Bl | Configure Server | Category Filter =

You are working online. LocationTransparency

=l = Tasks
3¢ [E— Which area would you like assistance with? Show this page on startup
S
= # Publish and Subscribe
. Documentation) Samples
@ Topics y For information about Neuron, consult the Browse the Neuron configuration and code
documentation. You'll find guidance, examples, ', samples to jumpstart your knowledge of Neuron
B publishers N 5
and best practices. ESB.

3B subscribers
9 conditions

Neuron ESB Product Team Blog
Stay up to date with the latestinformation from
the Neuron ESB Product Team via RSS!

& Neuron ESB Will be a Sponsor at the Gartner Sympesium ITxpo 2013 - Orlando, Florida

Sun, 06 Oct 2013 17:45:1

+0000

<p>Please join the Neuron ESE Product Team as we showcase Neuron ESB 3, the most cost effective and easy to use application integration and web service platform, ot
the Gartner Symposium/TTxpo 2013 in Orlanda Fla., Oct. 6-10. Neuron ESB provides superior connectivity for a fraction of what tradition

3 Setting Environment Variables in the ESEService.exe.config file

Thu, 19 Sep 2013 ©

<p=Normally, Neuron ESB environment variables are created and set in the ESB solution. To managed them, navigate to the Deployment tab and dlick the Environment
Variables node. Occasionally you may want to create and/or set an environment variable from within the Neuron ESB service's configuration

3

% Changing the location of Neuron ESB log files
g Repository Wed, 18 Sep 2013 06:01:55 +0000
e : <p>By default, Neuron ESE creates its log files in the following directory: <Install_Directory>Neudesicheuron ESB v3logs Under this directory there will be a subdirectory
W Connections for each instance of Neuron ESB installed on the server. For example, if you installed the DEFAULT instance, its logs will be st
@ Security 3 silent Installs of Neuran ESB
e Tue, 13 Aug 2013 04:59:26 +0000
\y’ Processes
4 <p>Evary now and again we gat a request for performing silent installs with Neuron. This article will describe how to accomplish that with the Neuron 3.0.3 release and
g - later. Format msiexec.exe /i <Meuron msi> <properties in the format of NAME=valus; see below> Properties Required LICENSEKEY — the
Deployment
]

¥ NEURON ESB 3.0.3 UPDATE AVAILABLE! i

s Activity

Minimize Neuron Explorer. Restore the TestHost if it is still running and press enter to shut the service
down.

Modify the address entries in the Tests project App.config to point to the onramp

<client>
<endpoint address="http://localhost/onramp" binding="basicHttpBinding"
bindingConfiguration="MessageContractService"
contract="McProxy.IExampleMessageContractInterface"
name="MessageContractService" />
<endpoint address="http://localhost/onramp" binding="basicHttpBinding"
bindingConfiguration="DataContractService"
contract="DcProxyVl.IExampleDataContractInterface"
name="DataContractService" />
</client>

Press Ctrl —F5 and then minimize the TestHost. Switch to Test View and run the Test Methods then
restore the TestHost window:

EX CWindows\system32\omd exe |ﬂléj

Received request with ParameterOne=Gunga Galunga and ParameterTwo=42
Received request with request, B67538% az arguments

m| »

Congratulations! You have just learned how to build an On Ramp in Neuron. For a real production
deployment you could use a much more sophisticated dispatching model.

At this point you know the fundamentals of how to build a powerful and flexible routing mechanism that
relieves clients of having to deal with multiple service addresses and multiple bindings.

Let’s now add versioning into the mix. Suppose you were given this mandate.

Modify an existing service by adding a required element to support new functionality to an
existing service without affecting current client code.

With Neuron there are several approaches to solving this problem. We will work through one way and
after you have completed that exercise you will be well on your way to being capable of developing your
own patterns.

Begin by shutting down the TestHost.

Modify the existing code in ExampleDataContracts.cs by adding highlighted code:

[DataContract (Namespace="http://datacontract/example")]
public class ExampleDcRequest
{
[DataMember (IsRequired=true,Order=1)]

public string Argumentl;

[DataMember (IsRequired=true,Order=2)]
public int Argument?2;

[DataMember (IsRequired = true, Order = 3)]
public double Argument3;

Modify the code in ExampleDataContractService.cs so that it looks like this

public string DoStuff (ExampleDcRequest request)

{
Console.WriteLine ("Received request with {0}, {1}, {2} as arguments",
request.Argumentl, request.Argument2,request.Argument3);
return "Ok. I did stuff at " + DateTime.Now;

Press F6 to compile and then press Ctrl-F5 and add a Service Reference to the Tests Project to

http://localhost/datacontract/. This time use the namespace DcProxyV2.

Shutdown the TestHost and add this method to the UnitTestl.cs

[TestMethod]
public void TestMethod3 ()
{
new Tests.DcProxyV2.ExampleDataContractInterfaceClient () .DoStuff (
new Tests.DcProxyV2.ExampleDcRequest { Argumentl = "request", Argument2 = 8675309,
= 3.14159 });
}

Change the newly generated address in the Tests App.config to the on ramp:

<endpoint address="http://localhost/onramp" binding="basicHttpBinding"
bindingConfiguration="MessageContractService"
contract="McProxy.IExampleMessageContractInterface"
name="MessageContractService" />

<endpoint address="http://localhost/onramp/" binding="basicHttpBinding"
bindingConfiguration="DataContractService"
contract="DcProxyVl.IExampleDataContractInterface"
name="DataContractService" />

<endpoint address="http://localhost/onramp/" binding="basicHttpBinding"
bindingConfiguration="DataContractServicel"
contract="DcProxyV2.IExampleDataContractInterface"
name="DataContractServicel" />

Argument3

Return to Neuron Explorer and click the Processes tab. Click [Ticon above the ChangeTopic Process to

create a new Process. Rename the Process InsertNode and drag a Transform-Xslt Process Step onto the

Process designer surface.

http://localhost/datacontract/

g Deployment

— = M
‘s Neuron ESB Explorer l = g
File View Tools Help
ﬁ):%- @& Running ~ _g i Configure Server | Category Filter -
‘You are working online. RTV
o _InsertNode X | Al
= Zoom = & Import & Export [Ef Print [Save [Coy
@ 00 VALE X | P & Import & Export [Print [Save 7] Copy
-4} ChangeTopic
[Rules - WF -
(@) Service
g Service Endpaint
o Workflow
22N [& Storage
Transform ER T
; £ opsc
|| Store
=] Table Query
43 ml Query
B ML L
b Transform - X5LT r
1] validate - Schema i
4 Misc
Referenced Assemblies
Name Insertiiode
. Description
fiezadag Category General
g Repository
w Connections E;]
@ Security Type Step Text
Name

The name of the process

Click the Transform-xslt Step. A property grid will appear. Click the ellipses on the TransformXml
property and enter this transform

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/*">

<DoStuff xmlns="http://datacontract/example">

<request xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<Argumentl><xsl:value-of select="//*[local-name ()="Argumentl']" /></Argumentl>
<Argument2><xsl:value-of select="//*[local-name ()="Argument2']" /></Argument2>
<Argument3>-1.00</Argument3>

</request>

</DoStuff>
</xsl:template>

</xsl:stylesheet>

i ™
XSLT Transform [E=EE

File Edit

Please enter X5LT for transforming the message

kxsl:stylesheet version="1.0" zmlns:xsl="http://www.w3.o0rg/1999/X5L/Transform">
<xsl:template match="/*">
<DoStuff xmlns="http://datacontract/example™>
<regquest xmlns:i="http://www.w3.org/2001/¥ML5chema-instance">
<Argumentl><xsl:value—of select="//*[local-name()="Argumentl']" /></Argul
<Argument2><xsl:value-of select="//*[local-name ()="Argument2']" /></Argu
<Argument3>-1.00</Argument3>
</request>
</DoStuff>
</xsl:template>
<fxsl:stylesheet>

Click Ok on the Transform-Xslt Step and Apply the Process then Save the configuration.

Navigate to the Messaging tab and then the DataContractSubscriber Party. Add the InsertNode Process
on the On Receive event.

r ™y
/E Processes g

’ﬂ}i Manage Processes for DataContractSubscriber

Available Processes: Selected Processes: DataContractSubscriber
Process Process Event
W W i On Receive [E)

L% o

Click the Conditions button next to the Event dropdown (circled in red above) and enter the following:

g ™y
4 Edit Conditions [ESRIE

?\,- Edit or Add Conditions - InsertNode

Body ~ | Does Not Contain ~| Argument3

UUDUDRRRR

o][cone

“ S

Click Ok twice and then Apply for the Party. Save the configuration.

Return to Visual Studio. If the TestHost is already running stop it and then press F6 and then Ctrl-F5 to
restart.

Switch to Test View and run the tests. Restore the TestHost and observe the output. You should see

output similar to this

B¥ C:\Windows'system32Z\cmd.exe |£|E|éj

Received request with regquest, 8675309, 3.1415% as arguments
Received request with ParameterOne=Gunga Galunga and ParameterTwo=42
Received request with request, 8675309, —1 as arguments

m| e

Notice that the process was invoked only when the old client packet was detected.

Congratulations once again. With this knowledge about the fundamentals of Neuron Processes and
conditions and some practice you should be prepared for pretty much any routing, transformation or

versioning challenge.

REST

Neuron REST support is straightforward and powerful. Using the same Neuron configuration, add a new
Topic named RESTExample. Add a Publisher named RESTPublisher and add a subscription to the
RESTExample topic with Send permissions. Add a Subscriber named RESTSubscriber and add a
subscription to the RESTExample topic with Receive permissions.

Create a Client Connector and change the Name to RESTPassThru. Change the Binding to REST:

(=
‘s Neuron ESB Explorer

File View Tools Help

H - @ Ruming - [0 [l | Configure Server | Category Filter -

‘You are warking online. RTV
0 0

= = Tasks
g Import a Service
= = Connection Methods
&' Adapter Registration
g Service Bindings
iy Service Behaviars
E = Endpoints
g Service Endpaints
G Adapter Endpoints
{% Workflow Endpoints
= = Policies
< Service Policies

@ Adapter Policies

[Q Messaging
g Repository

@ Security
‘yy Processes

g Deployment
s Activity

dpo
e
New [| Copy (9 Delete (] Hide Detail
| | ‘ Name | Cateqory | Zone | Binding Client Address | Service Address | Description b
P g DataContractService General Enterprise BasicHttp http:/flocalhost/datacontract/
P g MessageContractService General Enterprise BasicHttp http:/flocalhost/messagecontract/
T N S Concea e Docictibin T I Y =
@App\y ® Cancel = Bindings Adding New Service [0
General | Binding Security Client<T> Client Connector | Service Connector | Proxy Settings
Enable Service Endpoints
Name: RESTPassThru
Description: -
Category: General - Binding: [RST v]
Zone: Enterprise -] Behavior: [v]
30f3
Al # A B C D E F G H I] K L M O P Q R 5 w X Yy Z

Modified .:

Enable the Client Connector using the RESTPublisher, RESTExample and a URL of http://localhost:9555

Adding Mew Service | [0

@Apply @Cancel Bindings
| General | Binding | Security | Client<T= | Client Connector | Service Connector | Proxy Settings |
Enable Client Connector Capture custom headers
Publisher Id: [RESTPuinsher -] Max Concurrent Calls: 208
Topic: RESTExample - Max Concurrent Instances: 1008
URL: http:/flocalhost: 9555 Max Concurrent Sessions: 800

Metadata

Create and enable a separate Service connector named RESTPassThruService using the Party

RESTSubscriber and a URL to a search engine or your favorite blog (i.e.

http://neuronesb.wordpress.com/).

http://localhost:9555/
http://neuronesb.wordpress.com/

(=
‘s Neuron ESB Explorer

File View Tools Help ‘

= }’]- @ Running - o) [| Configure Server | Category Filter -

*fou are reconnected in Online Mode to : RTV

Connections & Service Endpoints
E = Tasks .
g Import a Service
£ = Connection Methods New Copy () Delete | (&) Hide Detail
' Adapter Registration | | ‘ Name: | Cateqgary | Zone | Binding Client Address | Service Address | Description
& Service Bindings P g DataContractService General Enterprise BasicHttp http:/flocalhost/datacontract/
C;j Service Behaviars 3 L.-q MessageContractService General Enterprise BasicHttp http:/flocalhost/messagecontract/
£ = Endpoints P <g OnRampConnector General Enterprise BasicHttp http:/flocalhost/onramp
L:?'ﬁServierndpcmts 3 L_-Q RESTPassThru General Enterprise REST http:/flocalhost: 9555
;}Zﬁ Workflow Endpoints
= = Policies)
~ &3 Apply () Cancel | Bindings Editing Service RESTPassThruService [0
< Service Polides
& Adapter Policies General | Binding | Security | Client<T= | Client Connector ‘ Service Connector | Proxy Settings |
Enable Service Connector Restore custom headers
Subscriber Id: [RESTSuhscnhEr v] [single instance
Policy: [DE(BUK '] Allow connection reuse
[7§ Messaging
URL: http:/fneurenesb.wordpress, com/
g Repasitory Failover URL(s):
@ Security
y Processes
g Deployment 5of5
S‘*‘"““ Al # A B C D E F 6 H I J K L M N O P Q R 5 T U ¥V W X Y Z

Save the configuration. Browse to http://localhost:9555 and you will see the website configured on the
Service Connector URL. This is fun but in production you are probably going to be using actual RESTful
API’s. The good news is from a Neuron standpoint it is essentially the same process.

Service Facade
The final walkthrough in this training will cover using Neuron as a Service Facade. This type of pattern is
often used in classic SOA approaches where a canonical model is exposed that in reality is composed of

information from various sources.
This walkthrough demonstrates a few key Web Services features in business processes:

e Service Endpoint Step — This step allows users to call any configured Service Endpoint (i.e.
Service Connector) directly, without the need to publish the message to a Topic. This works with
either Request/Response or Multicast/Datagram types of messaging patterns.

e Using the Cancel step to send a reply message back to the original sender — Typically the Cancel
step will just stop a business process. But when a cancel step is used in a process that is called
on the On Publish event, and the message being processed has a request semantic, then the
Cancel will automatically return the value of context.Data.

http://localhost:9555/

Create a new Visual studio Solution named ServiceFacade.
Complete the following steps:

e Add a Class Library Project named Order

e Sign the project with a new key named svcfacade (we will be GAC-ing this assembly)

e Add a Class Library Project named Purchasing

e Add a Class Library Project named Shipping

e Add a Console Application named TestHost

e Add a Test Application named Tests

e Delete the Classl.cs generated files

e Add a reference to System.ServiceModel and System.Runtime.Serialization to all of the projects.
We will not be generating proxies this time.

e Add a Class to OrderProject named Order.cs

e Add a Class to the Purchasing project named Purchasing.cs

e Add a Class to the Shipping project named Shipping.cs

e Inthe TestHost project, add references to the Purchasing and Shipping projects

e [f not already present, add an App.config file to the TestHost project

e Inthe Tests project, add a reference to the Order project

e If not already present, add an App.config to the Tests project

e Set the TestHost project as the Startup project

Your solution should now look something like this:

Selution Explorer
@ o-e2d| &=
Search Solution Explorer (Ctrl+;)

@ Selution 'ServiceFacade' (5 projects)
4 Crder
b & Properties
[» u-B References
B c# Ordercs
2 svefacadesnk
4 Purchasing
P M Properties
=B References
B ©* Purchasing.cs
4 Shipping
b M Properties
[u-B References
B ©* Shipping.cs
4 TestHost
B M Properties
[» u-B References
¢ App.config
P ©# Program.cs
4 [T Tests
b S Properties
=B References
¢ App.config
Be* UnitTestl.cs

Solution Explorer REETNSTALTES

Add the following code to the Order.cs file.

using System.ServiceModel;
using System.Xml.Serialization;
namespace Order
{
[MessageContract (WrapperNamespace="http://facade/orders")]
public class OrderRequest
{
[MessageBodyMember (Namespace="http://facade/orders")]
public string ItemCode;

[MessageBodyMember (Namespace = "http://facade/orders")]
public int Qty;
}

[MessageContract (WrapperNamespace = "http://facade/orders")]
[XmlRoot (Namespace="http://facade/orders")]
public class OrderResponse
{
[MessageBodyMember (Namespace = "http://facade/orders")]
public string TrackingCode;
}

[ServiceContract]
public interface IOrder

{
[OperationContract (ReplyAction="*")]
OrderResponse PlaceOrder (OrderRequest request);

Compile the project and add the assembly to the GAC.

Add the following code to the Purchasing.cs file

using System;
using System.ServiceModel;
namespace Purchasing

{

[ServiceContract]
public interface IPurchase
{
[OperationContract]
int Purchase(string itemCode, double gty);
}

public class PurchasingService : IPurchase
{
public int Purchase(string itemCode, double qgty)
{
return new Random (itemCode.GetHashCode ()) .Next () ;

}

Add the following code to the Shipping.cs file

using System;
using System.ServiceModel;
namespace Shipping
{
[ServiceContract]
public interface IShip
{
[OperationContract]
string ShipOrder (int po);
}

public class ShippingService :IShip

{

public string ShipOrder (int po)
{
return DateTime.Now.Ticks.ToString ("X");

}

Add the following using statements to the Program.cs file in the TestHost project

using System.ServiceModel;
using Purchasing;
using Shipping;

Modify the Program.cs file in the TestHost project so the body of the main method is as follows

static void Main(string[] args)
{
var mchost = new ServiceHost (typeof (PurchasingService));
var dchost = new ServiceHost (typeof (ShippingService));
mchost.Open () ;
dchost.Open () ;
Console.ReadLine () ;
mchost.Close () ;
dchost.Close();

Add the following entry to the TestHost App.config file between the configuration elements

<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="TestHostBehavior">
<serviceDebug includeExceptionDetailInFaults="true" />
<serviceMetadata httpGetEnabled="true" />
</behavior>
</serviceBehaviors>
</behaviors>
<services>
<service behaviorConfiguration="TestHostBehavior" name="Purchasing.PurchasingService">
<endpoint address="" binding="basicHttpBinding"
bindingConfiguration="" name="PurchasingService"
contract="Purchasing.IPurchase" />
<host>
<baseAddresses>
<add baseAddress="http://localhost/purchasing/" />
</baseAddresses>
</host>
</service>
<service behaviorConfiguration="TestHostBehavior" name="Shipping.ShippingService">
<endpoint address="" binding="basicHttpBinding"
bindingConfiguration="" name="ShippingService"
contract="Shipping.IShip" />
<host>
<baseAddresses>
<add baseAddress="http://localhost/shipping/" />
</baseAddresses>
</host>
</service>
</services>
</system.serviceModel>

Add the following using statements to UnitTest1.cs file

using Order;
using System.ServiceModel;

Update the TestMethod1 :

[TestMethod]
public void TestMethodl ()
{
var fac = new ChannelFactory<IOrder>("order");
var prox = fac.CreateChannel();
var response = prox.PlaceOrder (new OrderRequest { ItemCode = "i81u812", Qty = 42 });
Console.WriteLine (response.TrackingCode) ;

Open the Tests App.config file and add a client endpoint for the facade:

<system.serviceModel>

<client>
<endpoint address="http://localhost/facade” binding="basicHttpBinding"
bindingConfiguration="" contract="Order.IOrder" name="order" />
</client>

</system.serviceModel>

Compile the solution and start the TestHost (Ctrl-F5).
The Order assembly needs to be put into the Global Assembly Cache:

1. Open the Visual Studio Developer Command Prompt
2. Change directory to the location of the Order assembly

http://localhost/facade

3. Execute the command:

gacutil /if Order.dll

Restore or start Neuron Explorer. Do the following steps:

e (Create a new configuration
e Save the configuration as Fagcade
e Configure the Neuron ESB Service to run the Fagade configuration
e Restart the Neuron ESB Service
e Close and connect in Online mode
e Add a Topic named Fagade
e Add a Publisher named FacadePublisher that subscribes to Facade
e Add a Subscriber named FacadeSubscriber that subscribes to Facade
e Add a Client Connector and rename it OrdersClientConnector. Add the following settings
o Binding: BasicHttp
o Publisher Id: FacadePublisher
o Topic: Facade
o URL: http://localhost/facade
o Enable Client Connector

e Add a Service Connector and rename it PurchasingServiceConnector. Add the following settings

o Binding BasicHttp

o Subscriber Id: FacadeSubscriber
o URL: http://localhost/purchasing
o Enable Service Connector

e Add a Service Connector and rename it ShippingServiceConnector. Add the following settings

o Binding BasicHttp
o Subscriber Id: FacadeSubscriber
o URL: http://localhost/shipping
o Enable Service Connector
e Apply all changes and Save the configuration
e Create a new Process and rename it OrderProcess

Drag a Transform shape onto the Process Designer and add the following transform

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/*">
<Purchase xmlns="http://tempuri.org/">
<itemCode>
<xsl:value-of select="//*[local-name()='ItemCode']" />
</itemCode>
<gty>
<xsl:value-of select="//*[local-name ()="Qty"']l" />
</qty>
</Purchase>
</xsl:template>
</xsl:stylesheet>

http://localhost/facade
http://localhost/purchasing

Drag a C# Step onto the Process designer. Right-click on the code step and select Edit Code...

Add the following code to the code shape:

context.Data.Header.Action

Click Apply in the Code Editor and return to the designer.

"http://tempuri.org/IPurchase/Purchase";

Drag a Trace Step onto the designer. This Step has no properties. We will use it when we test our

process.

Drag a Service Endpoint Step onto the designer. Select the Service Endpoint Step and set the Service

Endpoint property to PurchasingServiceConnector:

-
‘4 Neuron ESB Explorer

G Activity

Select an existing service endpoint (connector).

=] [|
File View Tools Help
E :'ﬁv @ Running ~ a . Configure Server | Category Filter -
‘You are working online. Fagade
~ OrderProcess - C2 X ' OrderProcess X | X
=T) o pEEK £ Zoom ~ FImport & Export (B Print [Save []] Copy
9 0@
= OrderProcess|
g Verify Signed XML -
£) Services
OrderProcess 3 Adapter Endpoint
230 Publish
E% [Rules - WF
B
Transform ‘9 Service
L J <@ Service Endpaint
o Workflow
=] 2 & Storage |
cs ERT)
: g = opsc 3
[Store -
@ /7| Table Query o
Trace
4 Bindings
& Bindings (Collection)
Service 4 General
\ Endpoint | Disable False
[l Messaging Name
g Repository Service Endpoint PurchasingServiceConnector I
s — -
W Connections 0 Service Binding BasicHttp
Message Pattern Request-Reply
@ Security Type Step Text Service Policy Default
Category General
: Description
g e — Service Endpoint

Modified .:

Drag another Trace Step onto the Process designer after the Service Step.

Drag a C# Step onto the Process designer. Right-click on the code step and select Edit Code... Use the
File > Manage Referenced Assemblies... toolbar selection to bring up the References dialog and then

click the Browse button to bring up the Browse dialog. Select your Order assembly that you previously
placed in the GAC.

F- ™

Assembly Browser

Fitter

Name: Version Processor g

office 15000 MSIL

Crder 1.000 M3IL

CpsConverter Resources 61.00 MSIL

perfpkg 12000 MSIL

Palicy.1.0.Microsoft.Ink 6100 %86

Palicy.1.0.Microsoft. Interop. Security Az Roles 6.1.7600.16385 Amd64

Policy.1.0.Microsoft. Interop Security. Az Roles 6.1.7600.16385 86

Policy. 1.2 Microsoft.Interop . Security. Az Roles 6.1.7600.16385 *B6

Policy.1.2 Microsoft. Interop Security. Az Roles 6.1.7600.16385 Amde4

Palicy.1.7 Microsoft.Ink 6100 %86

Palicy.10.2 Microsoft TeamFoundation Work kem Tracking Client.... 10.0.0.0 Amd64

Policy.10.2 Microsoft. TeamFoundation Worktem Tracking Client.... 10.0.0.0 *BE

Policy.10.2 Microsoft. TeamFoundation. Worktem Tracking Cliert.... 10.0.0.0 *B6

Policy. 10.2 Microsoft. TeamFoundation Workctem Tracking Client.... 10.0.0.0 Amde4

Policy.10.2 Microsoft. TeamFoundation Worktem Tracking Cliert.... 10.0.0.0 Amd&4

Policy.10.2.Microsoft. TeamFoundation Workhtem Tracking Client.... 10.0.0.0 XBE [l

Policy.11.0.Microsoft Office Interop Access 15.0.0.0 MSIL i

Palicy.11.0.Microsoft Cffice. Interop . Excel 15.0.0.0 MSIL

Policy.11.0.Microsoft Cffice. Interop Graph 15.0.0.0 MSIL

Policy.11.0.Microsoft Cffice. Interop InfaPath 15.0.0.0 MSIL i
[ok || cancel |

L A

Click OK and OK again to add the reference. Add the following code to the code shape:

Order.OrderResponse response = new Order.OrderResponse();
context.Properties.Add ("response", response) ;

Saving our response at this point is technically not required for this scenario however in many scenarios
the response has multiple elements that need to be saved along the various steps so knowing how to
keep state in memory and restore that state as you progress along the Process is a valuable technique to
learn.

Click Apply in the Code Editor and Save the configuration.

Drag a Transform-Xslt Step onto the Process designer now and add the following XSLT to the Step

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/*">
<ShipOrder xmlns="http://tempuri.org/">
<po><xsl:value-of select="//*[local-name ()="'PurchaseResult']" /></po>
</ShipOrder>
</xsl:template>
</xsl:stylesheet>

Drag another Trace Step onto the Process Designer after the Transform-Xslt Step.
Drag another C# Step onto the Process designer. Right-click on the code step and select Edit Code...

Add the following code to the code shape:

context.Data.Header.Action = "http://tempuri.org/IShip/ShipOrder";

Click Apply in the Code Editor and return to the designer.

Drag a Service Endpoint Step onto the designer. Select the Service Endpoint Step and set the Service
Endpoint property to ShippingServiceConnector.

Drag another Trace Step onto the Process Designer after the Service Step.

Drag a C# Step onto the Process Designer and use the File>Manage Referenced Assemblies dialog to add
a reference to Order.dll for this Step. References are stored per Step so you have to do this again even
though you added it to a Code Step previously.

After you have added the reference, insert the following code into the Code Step and then click Apply:

Order.OrderResponse response = context.Properties[“response”] as Order.OrderResponse;
response.TrackingCode =
context.Data.ToXmlDocument () .DocumentElement [“"ShipOrderResult”].InnerText;

context.Data = new Neuron.Esb.ESBMessage (context.Data.Header.Topic, response);

Last but definitely not least, Drag a Cancel step to the end of the Process. Apply the changes to the
process.

The process should now contain this flow (you may have to use the pan tool and adjust the trace
window if you want to see all the steps as depicted):

OrderProcass

B

Transform

A

Trace

-
Service
Endpaint

@

Trace

&R

#

Transfarm

(1]

Trace

AN

g
Service
Endpoint

(1]

Trace

A

Cancel

The Cancel Step is a key component here. The Neuron API Send(..) method is what is used to publish.
That method always returns an ESBMessage. If it’s a Publish with Request Semantic you will get the
response from the Subscriber. When you put a Cancel Step at the end of a Process what you are saying
is run all the previous logic and then cancel sending the message to the publishing system. This has the
net effect of returning the last value of context.Data to the Send method!

Think of the Cancel acting more like a “Return”.

Now associate the OrderProcess process to the Party FacadePublisher, on the On Publish event. Apply
the changes to the Party and Save.

Return to Visual Studio. The TestHost should still be running. If it is not, press Ctrl-F5. Switch to Test
View and run TestMethod1.

ﬂ ServiceFacade - Microsoft Visual Studio (Administrator) C3 Y1 Quicklaunch (Ctri+Q) P - O x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM TOOLS TEST INFRAGISTICS ANMALYZE WINDOW HELP JoeKlug ~
£0-0 @20 W[9 C - b O - s] A

Test Explorer B /cp.config Shipping.cs Purchasing.cs Test Output-TestMethodl-2-1 3 X = [Solution Explorer

[E= ~ | Search P~ G&\'G--‘-’QETF-@\I'—-
Test Name: TestMethodl

Search Solution Explorer (Ctrl+;) P~

RunAll | Run.. = | Playlist: All Tests = Test Outcome: Passed
est Outcome: @ Passe Ra7 Solution 'ServiceFacade' (5 projects)

4 Passed Tests (1) Standard Output 4 Order
BD1AFIESESFIEAD b & Properties
b =8 References
b = Order.cs

H svcfacadesnk

4 Purchasing
b & Properties
b =8 References
b o Purchasing.cs

Pl Shipping
b & Properties
I =8 References
b c* Shipping.cs

4[] TestHost
b % Properties
b =8 References

¥ App.config
b c* Program.cs

4] Tests
b % Properties
b =B References

¥ App.config
b UnitTestl.cs

TestMethodl [T Solution Explorer P

Source: UnitTestl.cs line 13 Properties * o x
@ Test Passed - TestMethodl

Elapsed time: 855 ms =N e

Output

ErrorList Output Find Symbol Results

Ready

Congratulations yet again! You have completed this training.

Review

Neuron is a powerful Services Intermediary that uses Service Endpoints called Client Connectors to allow
Web Service Clients to communicate with the bus. Neuron communicates with services using a Service
Connector.

Client Connectors and Service Connectors are not aware of each other. Each Client Connector and
Service Connector is hosted in its own app domain.

Client Connectors and Service Connectors both use an embedded Party. When you enable a Party in a
Connector, you are using Neuron’s pub sub API to publish and subscribe to SOAP and REST requests.

Processes attached to the Party in Client Connectors and Service Connectors can be used to accomplish
many tasks common to SOA environments such as Location Transparency, Routing, Versioning and
Transformation.

A Client Connector can also be used with a Process that uses the Cancel trick to create a real time
message processing environment or hosted service that bypasses the publishing system. This hosted
service can utilize any logic you choose including making multiple web service calls.

Exercises
1. Create a Request-Reply OnRamp that accepts messages on a single Client Connector but can
send to multiple Service Connectors based on SOAP Action.
2. True or false: Neuron Client Connectors function as a Service Proxy with an embedded Neuron
Party?
3. True or false: Neuron produces WSDL and defaults to strongly typed messaging?
4. A Client Connector with a Datagram Messaging Pattern will publish the message as

a. Request
b. Multicast
c. Oneway

5. Create a fagade that calls two web services and returns the combined responses. Use the
message class so you can dynamically change the client request and response. Use the Publish
Step with a Request Semantic instead of the Service Step.

6. True or false: Neuron Client Connectors cannot be secured with Windows Groups?

7. Processes that manipulate a Web Service Response will work as expected if attached to:

a. the Client Connector Party’s On Client Publish

b. the Service Connector Party’s On Client Receive

c. the Service Connector Party’s On Client Publish

8. Accomplish the following:

1. Import a Service

2. Set logging to verbose.

3. Inthe Visual Studio project there is a file called Arguments for Test Client. Use these
value to call the Web Service using a Test Client

9. Which of the following statements are false?

a. Neuron supports custom WCF configurations.
b. Neuron supports REST.
c. Neuron Client Connectors and Service Connectors are linked in memory at runtime.
d. Neuron cannot use a schema to validate incoming messages.
10. Which of the following statements is false
a. A Service Connector with Request-Reply set for its Messaging Pattern will ignore
Multicast Semantic

b. A Service Connector with Request-Reply set for its Messaging Pattern will ignore
Request Semantic
c. A Process attached to the Service Connector’s On Client Receive can be used to alter the
Semantic thus affecting whether or not the message is delivered to the target service
d. A Process attached to the Service Connector’s On Client Publish can be used to alter the
Semantic thus affecting whether or not the message is delivered to the target service
11. True or False: A Cancel step can be used to send a reply back to a Web client?
12. True or False: A Service Endpoint step allows you to call a configured Service Connector directly
from with within a business process, bypassing the bus infrastructure entirely?

Appendix

The following Artifacts accompany this training:

o Neuron Web Services Answers.docx-Word Document with answers to Exercises that do not
require coding
e Neuron Web Services Projects- Directory with solutions to Exercises 1,5 and 8

